Tag: business maths
Questions Related to business maths
There are two balls in an urn whose colours are not known (each ball can be either white or black). A white ball is put into the urn. A ball is drawn from the urn. The probability that it is white is
A man is known to speak the truth 3 out of 4 times. He throws a die and reports that it is a six. The probability that it is actually a six is
A bag contains some white and some black balls, all combinations of balls being equally likely. The total number of balls in the bag is $10$. If three balls are drawn at random without replacement and all of them are found to be black, the probability that the bag contains $ 1$ white and $9$ black balls is
A box contain $N$ coins, $m$ of which are fair are rest and biased. The probability of getting a head when a fair coin is tossed is $1/2$, while it is $2/3$ when a biased coin is tossed. A coin is drawn from the box at random and is tossed twice. The first time it shows head and the second time it shows tail. The probability that the coin drawn is fair is
I post a letter to my friend and do not receive a reply. It is known that one letter out of $m$ letters do not reach its destination. If it is certain that my friend will reply if he receives the letter. If $A$ denotes the event that my friend receives the letter and $B$ that I get a reply, then
An electric component manufactured by 'RASU Electronics' is tested for its defectiveness by a sophisticated testing device. Let $A$ denote the event "the device is defective" and $B$ the event "the testing device reveals the component to be defective". Suppose $P(A)=\alpha$ and $P(B|A)=P(B'|A')=1-\alpha$, where $0 < \alpha < 1$, then
A bag contains $(2n+1)$ coins. It is known that $n$ of these coins have a head on both sides, whereas the remaining $n+1$ coins are fair. A coin is picked up at random from the bag and tossed. If the probability that the toss results in a head is $\displaystyle \frac{31}{42}$, then $n$ is equal to
The contents of urn I and II are as follows:
Urn I: 4 white and 5 black balls
Urn II: 3 white and 6 black balls
One urn is chosen at random and a ball is drawn and its colour is noted and replaced back to the urn. Again a ball is drawn from the same urn colour is noted and replaced. The process is repeated 4 times and as a result one ball of white colour and 3 of black colour are noted. Find the probability the chosen urn was I.
A signal which can be green or red with probability $\displaystyle \frac{4}{5}$ and $\displaystyle \frac{1}{5}$, respectively, is received at station A and then transmitted to station B. The probability of each station receiving the signal correctly is $\displaystyle \frac{3}{4}$. If the signal received at station B is green, then the probability that the original signal was green is
One bag contains 3 white balls, 7 red balls and 15 black balls. Another bag contains 10 white balls, 6 red balls and 9 black balls. One ball is taken from each bag. What is the probability that both the balls will be of the same colour?