Tag: business maths

Questions Related to business maths

Apply linear programming to this problem. A firm wants to determine how many units of each of two products (products D and E) they should produce to make the most money. The profit in the manufacture of a unit of product D is $100 and the profit in the manufacture of a unit of product E is $87. The firm is limited by its total available labor hours and total available machine hours. The total labor hours per week are 4,000. Product D takes 5 hours per unit of labor and product E takes 7 hours per unit. The total machine hours are 5,000 per week. Product D takes 9 hours per unit of machine time and product E takes 3 hours per unit. Which of the following is one of the constraints for this linear program?

  1. $5 D + 7 E≤ 5,000$

  2. $9 D + 3 E ≥4,000$

  3. $5 D + 7 E = 4,000$

  4. $5 D + 9 E ≤5,000$

  5. $9 D + 3 E ≤5,000$


Correct Option: E
Explanation:

Given, product D takes 5 hours per unit of labour, and
product E takes 7 hours per unit of labour.
Therefore, to produce D units of product D takes $5D$ hours and
to produce E units of product E takes $7E$ hours 
Given, total labour hours per week are $4000$ hours.
Hence, $5D+7E\leq 4000$

Given, product D takes 9 hours per unit of machine time, and
product E takes 3 hours per unit of machine time.
Therefore, to produce D units of product D takes $9D$ hours and
to produce E units of product E takes $3E$ hours 
Given, total machine hours per week are $5000$ hours.
Hence, $9D+3E\leq 5000$

To write the dual; it should be ensured that  
I. All the primal variables are non-negative.
II. All the bi values are non-negative.
III. All the constraints are $≤$ type if it is maximization problem and $≥$ type if it is a minimization problem.

  1. I and II

  2. II and III

  3. I and III

  4. I, II and III


Correct Option: C
Explanation:

To write the dual, then all the primal variables must be non-negative.

All the constraints are $\leq$ type if it ia maximization problem and $\geq$ type if it is a minimization problem.

If $x=\log _{2^2}2+\log _{2^3}2^2+\log _{2^4}2^3......+\log _{2^{n+1}}2^n+$, then the minimum value of $x$ will be-

  1. $\left(\dfrac 1{n+1}\right)^{\tfrac 1n}$

  2. $n\left(\dfrac 1{n+1}\right)^{\tfrac 1n}$

  3. $\left(\dfrac n{n+1}\right)^{\tfrac 1n}$

  4. None of the above.


Correct Option: B
Explanation:
given $x={log _{2^2}2+log _{2^3}{2^2}+log _{2^4}{2^3}+...+log _{2^{n+1}}2^n}$

we know that $A.M. \geq G.M.$

$\implies \dfrac{log _{2^2}2+log _{2^3}{2^2}+log _{2^4}{2^3}+...+log _{2^{n+1}}2^n}{n}\geq \sqrt[n]{log _{2^2}2*log _{2^3}{2^2}*log _{2^4}{2^3}*...*log _{2^{n+1}}{2^n}}$

$\implies \dfrac{x}{n}\geq \sqrt[n]{\dfrac{log2}{log2^2}*\dfrac{log2^2}{log2^3}*\dfrac{log2^3}{log2^4}*...*\dfrac{log2^n}{log2^{n+1}}}$

$\implies x\geq n\sqrt[n]{\dfrac{log2}{log2^{n+1}}}$

$\implies x\geq n({\dfrac{log2}{(n+1)log2}})^{\dfrac 1n}$

$\implies x\geq n({\dfrac{1}{n+1}})^{\dfrac 1n}$

therefore the minimum value of $x$ is $ n({\dfrac{1}{n+1}})^{\dfrac 1n}$

If $a,b >0$, $a+b=1$, then the least value of $(1+\dfrac 1a)(1+\dfrac 1b)$, is

  1. $3$

  2. $6$

  3. $9$

  4. $12$


Correct Option: C
Explanation:
Given, $a+b=1$
we know that, $A.M.\geq G.M.$

$\implies \dfrac{a+b}{2}\geq \sqrt{ab}$

$\implies \dfrac{1}{2}\geq \sqrt{ab}$

$\implies \sqrt{ab}\leq \dfrac{1}{2}$

squaring on both sides

$\implies ab \leq \dfrac{1}{4}$  --------------(1)

Similarly

$\implies \dfrac{1+a+1+b}{2}\geq \sqrt{(1+a)(1+b)}$

$\implies \dfrac{2+(a+b)}{2}\geq \sqrt{(1+a)(1+b)}$

$\implies \dfrac{2+1}{2}\geq \sqrt{(1+a)(1+b)}$

$\implies \dfrac{3}{2}\geq \sqrt{(1+a)(1+b)}$

squaring on both sides

$\implies \dfrac{1}{(1+a)(1+b)}\leq \dfrac{4}{9}$  ---------------(2)

multiplying (1) and (2) we get

$\implies \dfrac{ab}{(1+a)(1+b)}\leq \dfrac{1}{4}*\dfrac{4}{9}$

$\implies \dfrac{ab}{(1+a)(1+b)}\leq \dfrac{1}{9}$

$\implies \dfrac{1}{(1+a)(1+b)}\leq \dfrac{1}{9ab}$

$\implies \dfrac{(1+a)(1+b)}{ab}\geq 9$

$\implies \dfrac{(1+a)}{a}*\dfrac{(1+b)}{b}\geq 9$

$\implies (1+\dfrac{1}{a})(1+\dfrac{1}{b})\geq 9$

Therefore, the minimum value of $ (1+\dfrac{1}{a})(1+\dfrac{1}{b})$ is $ 9$

If $l,m,n$ be three positive roots of the equation $x^3-ax^2+bx+48=0$, then the minimum value of $\dfrac 1l +\dfrac 2m+\dfrac 3n$ is

  1. $1$

  2. $2$

  3. $\dfrac {-3}{2}$

  4. $\dfrac 52$


Correct Option: C
Explanation:

we Know that, $A.M.\geq G.M.$

$\implies \dfrac{a+b+c}{3}\geq \sqrt[3]{abc}$

let $a=\dfrac{1}{l}, b=\dfrac{2}{m}, c=\dfrac{3}{n}$

Therefore,

$\dfrac{1}{3}(\dfrac{1}{l}+\dfrac{2}{m}+\dfrac{3}{n})\geq \sqrt[3]{(\dfrac{1\times2\times3}{lmn})}$


$(\dfrac{1}{l}+\dfrac{2}{m}+\dfrac{3}{n})\geq 3\times\sqrt[3]{(\dfrac{1\times2\times3}{lmn})}$

Given, the roots of the polynomial $x^3-ax^2+bx+48=0$ are $l,m,n$
Therefore, the product of the roots $lmn=-(\dfrac{48}{1})=-48$

Substituting $lmn=-48$ in the above equation

$(\dfrac{1}{l}+\dfrac{2}{m}+\dfrac{3}{n})\geq 3\times\sqrt[3]{(\dfrac{6}{-48})}$

$(\dfrac{1}{l}+\dfrac{2}{m}+\dfrac{3}{n})\geq 3\times\sqrt[3]{(\dfrac{1}{-8})}$

$(\dfrac{1}{l}+\dfrac{2}{m}+\dfrac{3}{n})\geq 3\times\sqrt[3]{(-\dfrac{1}{2})^3}$

$(\dfrac{1}{l}+\dfrac{2}{m}+\dfrac{3}{n})\geq 3\times(-\dfrac{1}{2})$

$(\dfrac{1}{l}+\dfrac{2}{m}+\dfrac{3}{n})\geq (-\dfrac{3}{2})$

therefore, the minimum value is $-\dfrac{3}{2}$

Let $a _1,a _2....,a _n$ be a non negative real number such that $a _1+a _2....+a _n=m$ and let $S=\underset{i<j}\sum a _ia _j$, then

  1. $S\leq \dfrac {m^2}2$

  2. $S> \dfrac {m^2}4$

  3. $S< \dfrac {m}2$

  4. $S> \dfrac {m^2}2$


Correct Option: A

A firm manufactures three products $A,B$ and $C$. Time to manufacture product $A$ is twice that for $B$ and thrice that for $C$ and if the entire labour is engaged in making product $A,1600$ units of this product can be produced.These products are to be produced in the ratio $3:4:5.$ There is demand for at least $300,250$ and $200$ units of products $A,B$ and $C$ and the profit earned per unit is Rs.$90,$ Rs$40$ and Rs.$30$ respectively.

Rawmaterial Requirement per unit product(Kg)A Requirement per unit product(Kg)B Requirement per unit product(Kg)C Total availability (kg)
$P$ $6$ $5$ $2$ $5,000$
$Q$ $4$ $7$ $3$ $6,000$

Formulate the problem as a linear programming problem and find all the constraints for the above product mix problem.

  1. $3{x} _{1}-4{x} _{2}=0$ and $5{x} _{2}-4{x} _{3}=0$ where ${x} _{1},{x} _{2},{x} _{3}\ge0$

  2. $4{x} _{1}-3{x} _{2}=0$ and $5{x} _{2}-4{x} _{3}=0$ where ${x} _{1},{x} _{2},{x} _{3}\ge0$

  3. $4{x} _{1}-3{x} _{2}=0$ and $4{x} _{2}-5{x} _{3}=0$ where ${x} _{1},{x} _{2},{x} _{3}\ge0$

  4. $4{x} _{1}-3{x} _{2}=0$ and $5{x} _{2}-4{x} _{3}=0$ where ${x} _{1},{x} _{2},{x} _{3}\le0$


Correct Option: B
Explanation:

Formulation of L.P Model
Let ${x} _{1},{x} _{2}$ and ${x} _{3}$ denote the number of units of products $A,B$ and $C$ to be manufactured .
Objective is to maximize the profit.
i.e., maximize $Z=90{x} _{1}+40{x} _{2}+30{x} _{3}$
Constraints can be formulated as follows:
For raw material $P, 6{x} _{1}+5{x} _{2}+2{x} _{3}\le5,000$
For raw material $Q, 4{x} _{1}+7{x} _{2}+3{x} _{3}\le6,000$
Product $B$ requires $\frac{1}{2}$ and product $C$ requires ${\left(\frac{1}{3}\right)}^{rd}$ the time required for product $A.$
Then $\frac{t}{2}$ and $\frac{t}{3}$ are the times in hours to produce $B$ and $C$ and since $1,600$ units of $A$ will need time $1,600t$ hours, we get the constraint,
$t{x} _{1}+\frac{t}{2}{x} _{2}+\frac{t}{3}{x} _{3}\le 1,600t$ or 
${x} _{1}+\frac{{x} _{2}}{2}+\frac{{x} _{3}}{3}\le1,600$ or
$6{x} _{1}+3{x} _{2}+2{x} _{3}\le9,600$
Market demand requires
${x} _{1}\ge300, {x} _{2}\ge250,$ and ${x} _{3}\ge200$ 
Finally, since products $A,B$ and $C$ are to be produced in the ratio $3:4:5,$
${x} _{1}:{x} _{2}:{x} _{3}::3:4:5$
or $\frac{{x} _{1}}{3}=\frac{{x} _{2}}{4},$
and $\frac{{x} _{2}}{4}=\frac{{x} _{3}}{5}.$
Thus, there are two additional constraints
$4{x} _{1}-3{x} _{2}=0$ and $5{x} _{2}-4{x} _{3}=0$ where ${x} _{1},{x} _{2},{x} _{3}\ge0$ 

Find the output of the program given below if$ x = 48$
and $y = 60$
10  $ READ x, y$
20  $Let x = x/3$
30  $ Let y = x + y + 8$
40  $ z = \dfrac y4$
50  $PRINT z$
60  $End$

  1. $21$

  2. $22$

  3. $23$

  4. $24$


Correct Option: A
Explanation:

After the step $ 10 $ READ $ x, y $, the value of $ x = 48, y = 60 $

After the step $ 20 $ Let $ x = \frac {x}{3} $, the value of $ x = \frac {48}{3} = 16 , y = 60 $

After the step $ 30 $ Let $ y = x +y + 8 $, the value of $ x = 16, y = 16 + 60 + 8 = 84   $

After the step $ 40 $ Let $ z = \frac {y}{4} $, the value of $ x = \frac {84}{4} = 21   $

Hence $ z = 21 $ is the final output printed.

Conclude from the following:
$n^2 > 10$, and n is a positive integer.
A: $n^3$
B: $50$
  1. The quantity A is may be greater or smaller than B.

  2. The quantity B is greater than A.

  3. The two quantities are equal.

  4. The relationship cannot be determined from the information given.


Correct Option: A
Explanation:

given, $n^2 > 10$ and $n >0 $ 

multiplying both equations we get
$n^3>0$
so, it may be greater than or less than 50
Hence, quantity A is may be greater or smaller than B

For any positive real number $a$ and for any $n \in N$, the greatest value of 
$\dfrac {a^n}{1+a+a^2....a^{2n}}$ is

  1. $\dfrac 1{2n}$

  2. $\dfrac 1{2n+1}$

  3. $\dfrac 1{2n-1}$

  4. None of the above.


Correct Option: B
Explanation:

We know that $A.M.\geq G.M.$


Therefore, $\dfrac{1+a+a^2+...+a^{2n}}{2n+1}\geq \sqrt[(2n+1)]{1*a*a^2*...*a^{2n}}$

$\implies \dfrac{1+a+a^2+....+a^{2n}}{2n+1}\geq \sqrt[(2n+1)]{a^{(1+2+...+2n)}}$

We know that sum of first $n$ numbers is $1+2+...+n=\dfrac{n(n+1)}{2}$

Therefore $1+2+...+2n=\dfrac{2n(2n+1)}{2}=n(2n+1)$

$\implies \dfrac{1+a+...+a^{2n}}{2n+1}\geq (a^{n(2n+1)})^{\dfrac{1}{2n+1}}$

$\implies \dfrac{1+a+...+a^{2n}}{2n+1}\geq a^n$

$\implies \dfrac{a^n}{1+a+...+a^{2n}}\leq \dfrac{1}{2n+1}$

Therefore the greatest value of $\dfrac{a^n}{1+a+...+a^{2n}}$ is $\dfrac{1}{2n+1}$