Tag: business economics and quantitative methods

Questions Related to business economics and quantitative methods

The quartile deviation of daily wages (in Rs.) of 7 persons given below:
$12,7,15,10,17,17,25$ is

  1. $4.5$

  2. $9$

  3. $5$

  4. $14.5$


Correct Option: A
Explanation:

Writing the series in ascending order $7,10,12,15,17,19,25$
$\displaystyle{ Q } _{ 1 }=\frac { 15+7 }{ 2 } =11,{ Q } _{ 3 }=\frac { 25+15 }{ 2 } =20$
$\therefore$ Quartile Deviation
$\displaystyle=\frac { { Q } _{ 3 }-{ Q } _{ 1 } }{ 2 } =\frac { 20-11 }{ 2 } =4.5$

For the following data, the value of $Q _1 + Q _3 - Q _2$ is :

Age in years: 20 30 40 50 60 70 80
No. of members: 3 61 132 153 140 51 3
  1. $Q _1$

  2. $Q _2$

  3. $Q _3$

  4. $2Q _2$


Correct Option: B
Explanation:

The cumulative frequency table is as given below

Age in years No. of students Cumulative frequency
20                   3 3
30 61 64
40 132 196
50 153 349
60 140 489
70 51 540
81 3 543
N $= $543

Lower Quartile: We have, $\displaystyle\frac{N}{4} = \displaystyle\frac{543}{4} = 135.75$
Cumulative frequency just greater than $N/4$ is $196$ and the corresponding value of the variable is $40$.
$\therefore\quad Q _1 = $ Lower Quartile = $40$ years
Middle Quartile (Medium):
We have, $\displaystyle\frac{N}{2} = \displaystyle\frac{543}{2} = 271.5$
Cumulative frequency just greater than $N/2$ is $349$ and the corresponding value of the variable is $50$.
$\therefore\quad Q _2 = $ Middle quartile = $50$ years
Upper Quartile:
We have $\displaystyle\frac{3N}{4} = \displaystyle\frac{3\times543}{4} = 407.25$
Cumulative frequency just greater than $407.25$ is $489$ and the corresponding value of the variable is $60$.
$\therefore\quad Q _3= $ Upper quartile  $=60$ years
$\therefore\quad Q _1 + Q _3 - Q _2 = 40+60-50 = 50 = Q _2$

If the lower and upper quartiles of a data are $4$ and $12$, then the quartile deviation is ____

  1. $2$

  2. $4$

  3. $6$

  4. $8$


Correct Option: B
Explanation:

Quartile deviation is the half of the inter quartile deviation.

Inter quartile deviation is the difference between upper quartile and lower quartile.

Given that, lower quartile is $4$ and upper quartile is $12$

Therefore, Quartile deivation is $\dfrac{\text{upper quartile - lower quartile}}{2}$

$\implies \text{quartile deviation} =\dfrac{12-4}2=\dfrac 82 =4$

Find the quartile deviation of $4, 6, 9, 12, 18, 20, 23, 27, 34, 48$ and $53$

  1. $12.5$

  2. $13$

  3. $12$

  4. $11.5$


Correct Option: A
Explanation:

Given series of numbers is already arranged in ascending order.
Thus median is the centre value $ = 20 $
First Quartile $ {Q} _{1} $ will be the mid value of the observations to the left of $ 20 $ which is $ 9 $. 
Similarly, Third Quartile $ {Q} _{3} $ will be the mid value of the observations to the right of $ 20 $ which is $ 34 $.
And Quartile deviation will be $ \dfrac {{Q} _{3} - {Q} _{1}}{2} = \dfrac {34-9}{2} = \dfrac {25}{2} = 12.5 $.

For a series the value of mean deviation is 15.The most likely value of its quartile deviation is 

  1. 12.5

  2. 11.6

  3. 13

  4. 9.7


Correct Option: A
Explanation:

use:  M.D.$=\displaystyle \frac{4}{4}\sigma ,Q.D=\frac{2}{3}\sigma $ $\displaystyle \Rightarrow \frac{M.D.}{Q.D}=\frac{6}{5}\Rightarrow Q.D.=\frac{5}{6}\left ( M.D. \right )$


$MD=\frac { 4 }{ 5 } \times \sigma \quad ,\quad QD=\frac { 2 }{ 3 } \times \sigma \quad ,\quad \ \frac { MD }{ QD } =\frac { 6 }{ 5 } ,\quad QD\quad =\quad \frac { 5\times 15 }{ 6 } =12.5$

If the lower and upper quartiles of a data are 4 and
12 then the quartile deviation is_____

  1. 2

  2. 4

  3. 6

  4. 8


Correct Option: B
Explanation:

Lower Quartile $ {Q} _{1} = 4 $

Upper Quartile $ {Q} _{3} = 12 $

And Quartile deviation will be $ \frac {{Q} _{3} - {Q} _{1}}{2} = \frac {12-4}{2} = \frac {8}{2} = 4 $

For a grouped date, the formula for median is based on _______.

  1. interpolation method

  2. extrapolation method

  3. trial and error

  4. iterative method


Correct Option: A

Value of each sample observation is decreased by $25$, the range of the sample observation will ____________.

  1. increase by $25$

  2. remain same

  3. decrease by $25$

  4. increase by $2$ times


Correct Option: B

The range from the following observations is 
$10, 18, 20, 28, 15, 17, 22, 25, 29, 32, 34$

  1. $24$

  2. $20$

  3. $30$

  4. $42$


Correct Option: A
Explanation:

Range is defined as the difference between the highest(or largest ) and lowest(or smallest) observed value in a series. It is the most simple and commonly understandable measures of dispersion.

Range = H - L 
In the given series, H= 34 and L+ 10 
Range = 34-10 = 24.