Tag: business economics and quantitative methods

Questions Related to business economics and quantitative methods

If the A.M of a set of observations is $9$ and its G.M is $6$. Then the H.M of the set of observations is ____.

  1. $4$

  2. $6$

  3. $3$

  4. None of them


Correct Option: A

To find the median, it is necessary to arrange the data in _______.

  1. ascending order

  2. descending order

  3. ascending or descending order

  4. any of them


Correct Option: D

Calculate standard deviation of the following data.

X $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
f $10$ $8$ $15$ $8$ $4$
  1. $-12$

  2. $12$

  3. $12.36$

  4. $152.77$


Correct Option: C
Explanation:
Marks Mid-values(X) f dxi$=X-25/10$ $fdx _if$ $dx _i^2$
$0-10$ $5$ $10$ $-2$ $-20$ $40$
$10-20$ $15$ $8$ $-1$ $-8$ $8$
$20-30$ $25$ $15$ $0$ $0$ $0$
$30-40$ $35$ $8$ $1$ $8$ $8$
$40-50$ $45$ $4$ $2$ $8$ $16$
Total $45$ $-12$ $72$

$\sqrt{\displaystyle\frac{72}{45}-\frac{144}{45\times 45}}\times 10$
$=12.36$

The standard deviation of $10, 16, 10, 16, 10, 10, 16, 16$ is?

  1. $4$

  2. $6$

  3. $3$

  4. $0$


Correct Option: C
Explanation:

Assume $A=13;$ hence $d=A-13$

x d $d^2$
$10$ $-3$ $9$
$16$ $3$ $9$
$10$ $-3$ $9$
$16$ $3$ $9$
$10$ $-3$ $9$
$10$ $-3$ $9$
$16$ $-3$ $9$
$16$ $3$ $9$
$\displaystyle\sum d=0$ $\displaystyle\sum d^2=72$

Use following formula:
$\sqrt{\displaystyle\frac{\displaystyle\sum d^2}{n}-\left[\displaystyle\frac{\displaystyle\sum d}{n}\right]^2}$
$\sqrt{\displaystyle\frac{72}{8}-\left[\displaystyle\frac{0}{8}\right]^2}$
$\sqrt{9}$
$=3$.

Calculate standard deviation of the following data.

X $10$ $11$ $12$ $13$ $14$ $15$ $16$ $17$ $18$
f $2$ $7$ $10$ $12$ $15$ $11$ $10$ $6$ $3$
  1. $3.95$

  2. $1.99$

  3. $14$

  4. None of the above


Correct Option: B
Explanation:
X f fx X-Mean $f(X-x)^2$
$10$ $2$ $20$ $-4$ $32$
$11$ $7$ $77$ $-3$ $63$
$12$ $10$ $120$ $-2$ $40$
$13$ $12$ $156$ $-11$ $2$
$14$ $15$ $210$ $0$ $0$
$15$ $11$ $165$ $1$ $11$
$16$ $10$ $160$ $2$ $40$
$17$ $6$ $102$ $3$ $54$
$18$ $3$ $54$ $4$ $48$
Total $76$ $fX=1064$ $f(X-X)^2=300$

$^-{X}=\displaystyle\frac{1064}{76}=14$
$\sigma x=\sqrt{\displaystyle\frac{300}{76}}$
$=\sqrt{3.95}$
$=1.99$.

Find the mean and standard deviation of the following observations: X $=2, 5, 7, 8, 13$.

  1. $7$ & $3.63$

  2. $3.63$ & $7$

  3. $7.63$ & $3$

  4. $3$ & $7.63$


Correct Option: A
Explanation:

$\displaystyle\frac{2+5+7+8+13}{5}=7$
$\sqrt{\displaystyle\frac{4+25+49+64+169}{5}}-49=3.63$.

Find the present value of Rs. $10,000$ to be required after $5$ years if the interest rate be $9\%$. Given that $(1.09)^5=1.5386$.

  1. $6,994.42$

  2. $6,949.24$

  3. $6,449.24$

  4. $6,499.42$


Correct Option: D
Explanation:

Here, $i=0.09=9\%$
$n=5$
$A _n=10,000$
Required present value $=\displaystyle\frac{A _n}{(1+i)^n}$
$=\displaystyle\frac{10,000}{(1+0.09)^5}$
$=Rs. 6499.42$.

If the standard deviation of the numbers $2,3,a$ and $11$ is $3.5,$ then which of the following is true?

  1. $3a^2-32a+84=0$

  2. $3a^2-34a+91=0$

  3. $3a^2-23a+44=0$

  4. $3a^2-26a+55=0$


Correct Option: A
Explanation:
Numbers are $2,3,a$ and $11$
$N=4$
Standard deviation $\sigma=3.5$
Mean of numbers $(\overline{x})=\dfrac{2+3+11+a}{4}=\dfrac{16+a}{4}$

$\Rightarrow$  $\sigma^2=\dfrac{1}{N}\sum(x _i-\overline{x})^2$
$\Rightarrow$  $3.5\times 3.5\times 4\times  16=(8+a)^2+(4+a)^2+(16-3a)^2+(a-28)^2$
$\Rightarrow$  $784=64+a^2+16a+16+a^2+8a+256+9a^2-96a+a^2+784-56a$
$\Rightarrow$  $784=12a^2-128a+1120$
$\Rightarrow$  $196=3a^2-32a+280$

$\Rightarrow$  $3a^2-32a+84=0$

The two observations $A$ & $B$ are given by $100, 101, ........149$ and $200, 201, .......,249$ with $V _{A}$ and $V _{B}$ are variances of $A$ and $B$ than $V _{A}$ is equal to :

  1. $V _{B}$

  2. $100\ V _{B}$

  3. $50\ V _{B}$

  4. $200\ V _{B}$


Correct Option: A
Explanation:

$\sigma {x^2} = \frac{{\sum {{d^2}} }}{h}${here deviation are taken  from mean}

Since, A and B have consecutive integers therefore both have same standard deviation and hence variation 
${ V _{ A } }={ V _{ B } }\sum { { d^{ 2 } }\, \, is\, \, same } $

In expected rate of return for constant growth, dividends are expected to grow but with the _____________.

  1. constant rate

  2. variable rate

  3. yielding rate

  4. returning yield


Correct Option: A