Tag: heat transfer

Questions Related to heat transfer

If in an ideal gas $r$ is radius of molecule, $P$ is pressure, $T$ is absolute temperature and $k$ is Boltzmann's constant, then mean free path $\overline { \lambda  } $ of gas molecules is given as

  1. $\dfrac { 4\pi \sqrt { 2 } PT }{ k{ r }^{ 2 } } $

  2. $\dfrac { 4\pi \sqrt { 2 } kT }{ P{ r }^{ 2 } } $

  3. $\dfrac { kP }{ 4\pi \sqrt { 2 } { r }^{ 2 }T } $

  4. $\dfrac { kT }{ 4\pi \sqrt { 2 } { r }^{ 2 }P } $


Correct Option: D

Solar constant for earth is $2 \mathrm { cal } / \mathrm { min } \mathrm { cm } ^ { 2 } ,$ if distance ofmerary from sun is 0.4 times than distance of earthfrom sun then solar constant for mercury will be? 

  1. 12.5$\mathrm { cal } / \mathrm { min } \mathrm { cm } ^ { 2 }$

  2. 25$\mathrm { cal } / \mathrm { min } \mathrm { cm } ^ { 2 }$

  3. 0.32$\mathrm { cal } / \mathrm { min } \mathrm { cm } ^ { 2 }$

  4. 2$\mathrm { cal } / \mathrm { min } \mathrm { cm } ^ { 2 }$


Correct Option: C

The solar energy incident on the roof in 1 hour of dimension $ 8m \times 20m$ will be

  1. $5.76\times { 10 }^{ 8 }J$

  2. $5.76\times { 10 }^{ 7 }J$

  3. $5.76\times { 10 }^{ 6 }J$

  4. $5.76\times { 10 }^{ 5 }J$


Correct Option: A
Explanation:

Here the power per unit area is given, $I=10^3  W/m^2$

So, the total power $=I\times $ area of roof $=10^3\times (8\times 20)=1.6\times 10^5 W$ 
Since power is the energy divided by time so, energy, $E=Pt=1.6\times 10^5 \times (3600)=5.76\times 10^8  J$

The Sun delivers ${{10}^{3}}W/{{m}^{2}}$ of electromagnetic flux to the Earth's surface.The total power that is incident on a roof of dimensions $8m\times 20m$, will be

  1. $6.4\times { 10 }^{ 3 }W$

  2. $3.4\times { 10 }^{ 4 }W$

  3. $1.6\times { 10 }^{ 5 }W$

  4. none of these


Correct Option: C
Explanation:

Here the power per unit area is given, $I=10^3  W/m^2$

So, the total power $=I\times $ area of roof $=10^3\times (8\times 20)=1.6\times 10^5 W$ 

Choose the correct relation, when the temperature of an isolated black body falls from $T _{1}$ to $T _{2}$ in time $'t'$, and assume $'c'$ to be a constant.

  1. $t - c \left (\dfrac {1}{T _{2}} - \dfrac {1}{T _{1}}\right )$

  2. $t = c \left (\dfrac {1}{T _{2}^{2}} - \dfrac {1}{T _{1}^{2}}\right )$

  3. $t = c \left (\dfrac {1}{T _{2}^{3}} - \dfrac {1}{T _{1}^{3}}\right )$

  4. $t = c \left (\dfrac {1}{T _{2}^{4}} - \dfrac {1}{T _{1}^{4}}\right )$


Correct Option: C

Calculate the surface temperature of the planet, if the energy radiated by unit area in unit time is $5.67 \times 10^4$ watt.

  1. $1273^{\circ}C$

  2. $1000^{\circ}C$

  3. $727^{\circ}C$

  4. 727K


Correct Option: C
Explanation:

According to stefan's Boltzmann law, the energy radiated per unit time:
$E=\sigma A{ T }^{ 4 }$
It is given that: ${E}={5.67}\times{10}^{4}$
Therefore, ${5.67}\times{10}^{4}={5.67}\times{10}^{-8}\times1\times{T}^{4}$
So, ${T}={1000}K$
${T}={1000-273}={727} \  ^oC$

A hot liquid is kept in a big room . the logarithm of the numerical value of the temperature difference between the liquid and the room is plotted against time. the plot will be very nearly

  1. a straight line

  2. a circular arc

  3. a parabola

  4. an ellipse


Correct Option: A

A solid at temperature $ T _1 $ is kept in an evacuated chamber at Temperature $ T _2 > T _1 $ . the rate of increase of temperature of the body is proportional to

  1. $ T _2- T _1 $

  2. $ T^2 _2 - T^2 _1 $

  3. $ T^3 _2 -T^3 _1 $

  4. $ T^4 _1 - T^4 _1 $


Correct Option: D

A black body radiates energy at the rate of $E$ watt per metr$e^2$ at a high ternperature $T$ K. when the temperature is reduced to $(T/2)$ K, the radiant energy will be

  1. $E/16$

  2. $E/4$

  3. $E/2$

  4. $2E$


Correct Option: A
Explanation:

By Stefan-Boltzmann law black body radiation of energy $E$ is directly proportional to fourth power of $T$ temperature of the black body.
$E\quad \propto \quad { T }^{ 4 }$
If the temperature of the body is reduced to $\dfrac{T}{2}$, the energy of radiation will be $\dfrac{E}{16}$
option (A) is the correct answer.

The rate of radiation of a black body at $0^{\circ}C$ is $E$ J/s. Then the rate of radiation of this black body at $273^{\circ}C$ will be

  1. 16 E

  2. 8 E

  3. 4 E

  4. E


Correct Option: A
Explanation:

From the stefan's law: ${E}={\sigma}{A}{T}^{4}$
So, ${E}={\sigma}{A}{273}^{4}$------(1)
Now, for second one ${E} _{1}={\sigma}{A}{546}^{4}$-----(2)
On dividing equation(2) by (1), we get
$\dfrac{{E} _{1}}{E}=\dfrac{{546}^{4}}{{273}^{4}}={16}$

Or, we can say ${E} _{1}={16}{E}$