Tag: electromagnetic induction

Questions Related to electromagnetic induction

If length of a solenoid is increased then what change should be made on no. of turns to keep self inductance constant-

  1. increase

  2. remain same

  3. decrease

  4. none of these


Correct Option: A
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

For constant $L$,    $N^2\propto l$

Hence, on increasing length of coil, number of turns should be increased to keep $L$ constant.

Answer-(A)

Self inductance of long solenoid is directly proportional to-($A$ is area of cross section)

  1. $A$

  2. $A^2$

  3. $A^3$

  4. $A^4$


Correct Option: A
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times A=Li$

$\implies L\propto A$

Answer-(A)

If radius of long solenoid is reduced to half of original without changing other physical factor,then its self inductance will change-

  1. 1/3 times

  2. 1/2 times

  3. 1/5 times

  4. 1/4 times


Correct Option: D
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto R^2$

Hence, on reducing the radius to half, $L$ will becomes $\dfrac{1}{4}$ times.

Answer-(D)

Self inductance $L$ of long solenoid is being proportional to the number of turns $N$ as-

  1. $N$

  2. $N^2$

  3. $N^3$

  4. $N^4$


Correct Option: B
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto N^2$

Answer-(B)

If the number of turns and length of the long solenoid are doubled without changing the area, then its self-inductance $L$ will be:

  1. same

  2. 2 times

  3. 3 times

  4. 4 times


Correct Option: B
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

$\implies L\propto \dfrac{N^2}{l}$

Hence, on doubling both $N$ and $l$,

$L$ becomes twice.

Answer-(B)

Self inductance of a long solenoid is directly proportional to-
(Where $L$ is the length of solenoid)

  1. $L$

  2. $L^2$

  3. $1/L$

  4. $1/L^2$


Correct Option: C
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto \dfrac{1}{l}$

Answer-(C)

Self inductance of a long solenoid is directly proportional to 
($N$ is no. of turns in solenoid)

  1. $N$

  2. $N^2$

  3. $1/N$

  4. $1/N^2$


Correct Option: B
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto N^2$

Answer-(B)

If area of a long solenoid is doubled,length is trippled and no. of turns are remained contant.Then its self-inductance will be changed how many times-

  1. $1/3$

  2. $2/3$

  3. $1/9$

  4. $4/3$


Correct Option: B
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times A$

$\implies E=\dfrac{\mu _{o}N^2A}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 A}{l}$

Hence, on doubling area and tripling the length of solenoid,

$L$ becomes $\dfrac{2}{3}$ times.


Answer-(B)

When the speed at which a conductor is moved through a magnetic field is increased, the induced voltage

  1. increases

  2. decreases

  3. remains constant

  4. reaches zero


Correct Option: A
Explanation:

$E=vBl$    where $v$=speed of conductor


Hence, on increasing speed of conductor , induced voltage increases..

Answer-(A)

Reactance of a coil is $157\Omega$. On connecting the coil across a source of frequency $ 100Hz$, the current lags behind e.m.f. by ${ 45 }^{ o }$. The inductance of the coil is _________.

  1. $0.25 H$

  2. $0.5 H$

  3. $4H$

  4. $314 H$


Correct Option: A
Explanation:

Since the phase angle is $45^{\circ}$,

$\dfrac{X _L}{R}=tan\phi=tan45^{circ}=1$
$\implies X _L=R$
$\implies \omega L=R$
$\implies 2\pi f L=R$
$\implies L=\dfrac{R}{2\pi f}$
$=\dfrac{157}{2\pi\times 100}H$
$=0.25H$