Tag: hyperbola

Questions Related to hyperbola

The product of the lengths of perpendiculars drawn from any point on the hyperbola $x^{2}-2y^{2}-2=0$ to its asymptotes is 

  1. 1/2

  2. 2/3

  3. 3/2

  4. 2


Correct Option: A

The angle between the asymptotes of the hyperbola $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$, the length of whose latus rectum is $\dfrac{4}{3}$ and hyperbola passes through the point $(4,2)$ is :

  1. $\dfrac{\pi}{6}$

  2. $\dfrac{\pi}{2}$

  3. $\dfrac{\pi}{3}$

  4. $\dfrac{\pi}{4}$


Correct Option: A

The angle between the asymptotes of a hyperbola is $30^{o}$. The eccentricity of the hyperbola may be

  1. $\sqrt{3}\pm 1$

  2. $\sqrt{3}+1$

  3. $\pm\sqrt{2}$

  4. $none\ of\ these$


Correct Option: D

If the equation $3x^{2}+xy-y^{2}-3x+6y+2=0$ represents hyperbola then equation of the asymptotes is given by

  1. $3x^{2}+xy-y^{2}-3x+6y-9=0$

  2. $3x^{2}+xy-y^{2}-3x+6y-7=0$

  3. $3x^{2}+xy-y^{2}-3x+6y=0$

  4. $none of these$


Correct Option: A

If e is the eccentricity of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $'\Theta '$ be the angle between its asymptotes, then $cos(\Theta /2)$ is equal to,

  1. 1/2e

  2. 1/e

  3. $1/e^{2}$

  4. none of these


Correct Option: A

The equation of the line passing through the centre of a rectangle hyperbola is $x-y-1=0$. If one of its asymptotes is $3x-4x-6=0$, the equation of the other asymptote is $

  1. $4x+3y+17=0$

  2. $4x-3y+8=0$

  3. $3x-2y+15=0$

  4. $None of these$


Correct Option: A

if the product of the perpendicular distances from any point on the hyperbola$\frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1\quad of\quad eccentrincity\quad e=\sqrt { 3 } $ on its asymptotes is equal to 6 then the length of the transverse axis of the hyperbola is;

  1. 3

  2. 6

  3. 8

  4. 12


Correct Option: A

if the product of the perpendicular distances from any point on the hyperbola $\frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ of eccentrincity $e=\sqrt { 3 } $ on the asymptotes is equal to 6 then the length of transverse axis of the hyperbola is

  1. 3

  2. 6

  3. 8

  4. 12


Correct Option: A

If $e$ is the eccentricity of $\dfrac {x^{2}}{a^{2}}-\dfrac {y^{2}}{b^{2}}=1$ and '$\theta $' be the angle between its asymptotes then $\cos (\theta /2)$ is equal to.

  1. $1/ 2e$

  2. $1/ e$

  3. $2/e^{2}$

  4. $none\ of\ these$


Correct Option: B

The asymptotes of the hyperbola $xy-3x+4y+2=0$

  1. $x=-4$

  2. $x=4$

  3. $y=-3$

  4. $y=3$


Correct Option: A,D
Explanation:

Since the equation of a hyperbola and its asymptotes differ in constant terms only. Therefore, the equations of asymptotes of the given hyperbola are given by $xy-3x+4y+k=0$

where $k$ is a constant to be determined  by the condition that $abc+2fgh-{ af }^{ 2 }-{ bg }^{ 2 }-{ ch }^{ 2 }=0$
i.e., $\displaystyle 0+2\times 2\times \left( \frac { -3 }{ 2 }  \right) \times \frac { 1 }{ 2 } -0-0-k\times { \left( \frac { 1 }{ 2 }  \right)  }^{ 2 }=0\Rightarrow k=-12$
$\because $ Asymptotes of the given hyperbola are $xy-3x+4y-12=0$ or $(x+4)(y-3)=0$
i.e., $x=-4$ and $y=3.$