Tag: applications of determinants
Questions Related to applications of determinants
The straight lines $\mathrm{x}+2\mathrm{y}-9=0,3\mathrm{x}+5\mathrm{y}-5=0$ and $\mathrm{a}\mathrm{x}+\mathrm{b}\mathrm{y}-1=0$ are concurrent if the straight line $22\mathrm{x}-35\mathrm{y}-1=0$ passes through the point
If $\mathrm{a}\neq b\neq \mathrm{c}$ and if $ax+by+\mathrm{c}=0\ bx+cy+\mathrm{a}=0$ and $cx+ay+b=0$ are concurrent,
Which of the following are correct in respect of the system of equations $x + y + z = 8, x - y + 2z = 6$ and $3x - y + 5z = k$?
1. They have no solution, if $k = 15$.
2. They have infinitely many solutions, if $k = 20$.
3. They have unique solution, if $k = 25$.
Select the correct answer using the code given below
To solve $x + y = 3 : 3 x - 2 y - 4 = 0$ by determinant method find $D.$
If the lines $p _{1}x+q _{1}y=1,p _{2}x+q _{2}y=1 $ and $ p _{3}x+q _{3}y=1$ be concurrent, then the points $(p _{1},q _{1}),(p _{2},q _{2})$ and $(p _{3},q _{3})$ ,
If $\Delta =\begin{vmatrix}
x+1 & x+2 & x+a\
x+2 & x+3 & x+b\
x+3 & x+4 & x+c
\end{vmatrix}=0$, then
the family of lines $ax+by+c=0$ passes through
If the lines $\mathrm{x}+\mathrm{p}\mathrm{y}+\mathrm{p}=0,\ \mathrm{q}\mathrm{x}+\mathrm{y}+\mathrm{q}=0$ and $\mathrm{r}\mathrm{x}+\mathrm{r}\mathrm{y}+1 =0 (\mathrm{p},\mathrm{q}, \mathrm{r}$ being distinct and $ \neq$ 1) are concurrent, then the value of
$\displaystyle \frac{p}{p-1}+\frac{q}{q-1}+\frac{r}{r-1}=$
If $\begin{vmatrix} x _1 & y _1 & 1 \ x _2 & y _2 & 1 \ x _3 & y _3 & 1\end{vmatrix}=\begin{vmatrix} a _1 & b _1 & 1\ a _2 & b _2 & 1 \ a _3 & b _3 & 1\end{vmatrix}$, then the two triangles with vertices $(x _1, y _1), (x _2, y _2), (x _3, y _3)$ and $(a _1,b _1)$, $(a _2, b _2)$, $(a _3, b _3)$ must be congruent.
If the area of the triangle with vertices $(2, 5), (7, k)$ and $(3, 1)$ is $10$, then find the value of $k$.
If $\displaystyle \left | \begin{matrix}x _{1} &y _{1} &1 \ x _{2} &y _{2} &1 \ x _{3} &y _{3} &1 \end{matrix} \right |=\left | \begin{matrix}1 &1 &1 \ b _{1} &b _{2} &b _{3} \ a _{1} &a _{2} &a _{3}\end{matrix} \right |$ then the two triangles whose vertices are $\displaystyle \left ( x _{1},y _{1} \right ), \left ( x _{2},y _{2} \right ), ( \left ( x _{3},y _{3} \right ) $ and $\displaystyle\left ( a _{1},b _{1} \right ), \left ( a _{2},b _{2} \right ), \left ( a _{13},b _{3} \right ),$ are
- ← Previous
- 1
- 2
- 3
- 4
- Next →