Tag: determinants
Questions Related to determinants
The number of value of $x$ in the closed interval $[-4,-1]$, the matrix $\begin{bmatrix} 3 & -1+x & 2 \ 3 & -1 & x+2 \ x+3 & -1 & 2 \end{bmatrix}$ is singular is
If $\left[ {\begin{array}{*{20}{c}}1&{ - 1}&x\1&x&1\x&{ - 1}&1\end{array}} \right]$ has no inverse, then the real value of $x$ is
The matrix $\begin{bmatrix} 1 & 0 & 1 \ 2 & 1 & 0 \ 3 & 1 & 1 \end{bmatrix}$ is:
If $\begin{bmatrix} 1 & 2 & x \ 4 & -1 & 7 \ 2 & 4 & 6 \end{bmatrix}$ is a singular matrix, then $x=$
$A$ and $B$ are two non-zero square matrices such that $AB = 0$. Then
If the matrix $\begin{bmatrix} \alpha & 2 & 2 \ -3 & 0 & 4 \ 1 & -1 & 1 \end{bmatrix}$ is not invertible, then:
Consider the following statements:
1. The matrix
$\begin{pmatrix} 1 & 2 & 1 \ a & 2a & 1 \ b & 2b & 1 \end{pmatrix}$ is singular.
2. The matrix
$\begin{pmatrix} c & 2c & 1 \ a & 2a & 1 \ b & 2b & 1 \end{pmatrix}$ is non-singular.
Which of the above statements is/are correct?
Let $A$ be a square matrix all of whose entries are integers. Then which one of the following is true?
If $A$ and $B$ are two non-zero square matrices of the same order such that the product $AB=0$, then
Let $A=\begin{bmatrix} a & b\ c & d\end{bmatrix}$ be a $2\times 2$ matrix, where a, b, c and d take the values $0$ or $1$ only. The number of such matrices which have inverses is?