Tag: divsion of line segmet in given ratio

Questions Related to divsion of line segmet in given ratio

Find the points $A(a, b), B(-a, -b)$ and $P(a^2, ab)$ are collinear then the ratio in which p divides $\overline{AB}$ is 

  1. 1 + a : 1 - a

  2. 1 : a

  3. a : 1

  4. 1 - a : 1 + a


Correct Option: A

The plane XOZ divides the join of (1, -1, 5) and (2, 3, 4) in the ratio $\lambda : 1$, then $\lambda$ is 

  1. $-3$

  2. $\dfrac{-1}{3}$

  3. $3$

  4. $\dfrac{1}{3}$


Correct Option: A

In $\triangle ABC$ $PQR$ $\overline { BC } .\overline { CA } .\overline { AB } $ respectively dividing them in the ratio $1:4,3:2$ and $3:7$. The point $S$ divides $AB$ in the ratio $1:3$ Then $\dfrac { \left| \overline { AP } +\overline { BQ } +\overline { CR }  \right|  }{ \left| CS \right|  } =$

  1. $\dfrac {1}{5}$

  2. $\dfrac {2}{5}$

  3. $\dfrac {5}{2}$

  4. $\dfrac {7}{10}$


Correct Option: A

A straight line through the origin O meets the parallel lines 4x+2y=9 and 2x+y+6=0 at point P and Q respectively. Then the point O divides the segment PQ in the ratio

  1. 1:2

  2. 3:4

  3. 2:1

  4. 4:3


Correct Option: A

The ratio in which the line segment joining the points $\left(3,-4\right)$ and $\left(-5,6\right)$ is divided by the $x-$ axis, is

  1. $2:3$

  2. $3:2$

  3. $6:4$

  4. $none\ of\ these$


Correct Option: A

The ratio in which the point $(x _{1} \sin^{2} \theta, y _{1} \cos^{2} \theta)$ divides the line joining $(x _{1}, 0)$ and $(0, y _{1})$ is -

  1. $\tan^{2} \theta : \cot^{2} \theta$

  2. $\cos \theta : \sin \theta $

  3. $\cos^{2} \theta : \sin^{2} \theta$

  4. $(1-\cos \theta) : (1-\sin \theta)$


Correct Option: A

A point which divides the joint of $(1,2)$ and $(3,4)$ externally in the ratio $1:1$

  1. Lies in the first quadrant

  2. Lies in the second quadrant

  3. Lies in third quadrat

  4. Cannot be found


Correct Option: A

If the ratio in which the line segment joining the points (6,4) and (x,-7) divided internally by y-axis is 6: 1, then x equals

  1. 2

  2. 3

  3. -1

  4. -2


Correct Option: A