Tag: existence of irrational numbers

Questions Related to existence of irrational numbers

Simplify the following expressions.
Classify the following numbers as rational or irrational.

  1. $\left( 5+\sqrt { 7 } \right) \left( 2+\sqrt { 5 } \right)$

  2. $\left( 5+\sqrt { 5 } \right) \left( 5-\sqrt { 5 } \right)$

  3. ${ \left( \sqrt { 3 } +\sqrt { 7 } \right) }^{ 2 }$

  4. $\left( \sqrt { 11 } -\sqrt { 7 } \right) \left( \sqrt { 11 } +\sqrt { 7 } \right)$


Correct Option: D
Explanation:

$A:$

$\left( {{\rm{5}} + \sqrt {\rm{7}} } \right)\left( {{\rm{2}} + \sqrt {\rm{5}} } \right)$  

$=10+5\sqrt5+2\sqrt7+\sqrt{35}$

Now, $10$ is rational and $\sqrt5,\sqrt7$ are non terminating , non repeating is an irrational 

and we know that $rational + irrational = irrational$ 

Therefore,  $\left( {{\rm{5}} + \sqrt {\rm{7}} } \right)\left( {{\rm{2}} + \sqrt {\rm{5}} } \right)$  is  irrational 


$B:$
$\left( {{\rm{5}} + \sqrt {\rm{5}} } \right)\left( {5 - \sqrt {\rm{5}} } \right)$

$={{\rm{5}}^2} + {\left( {\sqrt {\rm{5}} } \right)^2} = 25 - 5$

$=5$, which is rational 

So, $\left( {{\rm{5}} + \sqrt {\rm{5}} } \right)\left( {5 - \sqrt {\rm{5}} } \right)$
Is rational number.


$C:$
${\left( {\sqrt {\rm{3}}  + \sqrt {\rm{7}} } \right)^{\rm{2}}}$

$={\left( {\sqrt {\rm{3}} } \right)^2} + {\left( {\sqrt {\rm{7}} } \right)^2} + 2\sqrt {\rm{3}} \sqrt 7 $

$={\left( {\sqrt {\rm{3}} } \right)^2} + {\left( {\sqrt {\rm{7}} } \right)^2} + 2\sqrt {{\rm{21}}} =3 + 7 + 2\sqrt {{\rm{21}}} =10+2\sqrt{21}$
and $10$ and $\sqrt{21}$ are both rational.

Therefore, ${\left( {\sqrt {\rm{3}}  + \sqrt {\rm{7}} } \right)^{\rm{2}}}$ is rational.


$D:$
$\left( {{\rm{11}} - \sqrt {\rm{7}} } \right)\left( {{\rm{11 + }}\sqrt {\rm{7}} } \right)$

$={\left( {{\rm{11}}} \right)^2} - {\left( {\sqrt {\rm{7}} } \right)^2}$

$=11-7=4$, which is rational.

Therefore $\left( {{\rm{11}} - \sqrt {\rm{7}} } \right)\left( {{\rm{11 + }}\sqrt {\rm{7}} } \right)$ is rational.

Which of the following numbers are an irrational number. 

  1. $2- \sqrt 5$

  2. $\left( {3 + \sqrt {23} } \right) - \left( {\sqrt {23} } \right)$

  3. $\frac{1}{\sqrt 2}$

  4. $2\pi $


Correct Option: A,C,D
Explanation:

$A$ is a irrational number as it cannot be expressed of the form $\cfrac{p}{q}$

$B$ is a rational number. As it can be expressed in the form of $\cfrac{3}{1}$
$C$ is a irrational number as it cannot be expressed of the form $\cfrac{p}{q}$
$D$ is a irrational number as it cannot be expressed of the form $\cfrac{p}{q}$ of two integers

If $p$ and $q$ are two distinct irrational numbers, then which of the following is always is an irrational number

  1. $\dfrac{p}{q}$

  2. $pq$

  3. $(p+q)^2$

  4. $\dfrac{p^2q+qp}{pq}$


Correct Option: D
Explanation:

As, given $p$ and $q$ are two distinct irrational numbers.


Let $p=2+\sqrt 3$ and $q=2-\sqrt 3$

Then,

Option $A$
$\dfrac{p}{q}=\dfrac{2+\sqrt3}{2-\sqrt 3}$
$\dfrac{p}{q}=\dfrac{4+3+4\sqrt3}{4-3}=7+4\sqrt 3$

Option $B$
$pq=(2+\sqrt3)(2-\sqrt 3)=4-3=1$


Option $C$
$(p+q)^2=(2+\sqrt3+2-\sqrt 3)^2=4^2=16$

Option $D$
$\dfrac{p^2q+pq}{pq}=p+1$ is always an irrational number, because sum of rational and irrational is always irrational.

Hence, this is irrational.

Hence, this is the answer.

$\sqrt 7 $ is irrational.

  1. True

  2. False


Correct Option: A
Explanation:
Lets assume that √7 is rational number. ie √7 = p/q.
suppose p/q have common factor then
we divide by the common factor to get √7 = a/b were a and b are co-prime number.
that is a and b have no common factor.
√7 =  a/b co- prime number
√7 = a/b
a = √7b
squaring
a² = 7b²                                   ....(i)
a² is divisible by 7
a = 7c
substituting values in eq (i)
(7c)² = 7b²
49c² = 7b²
7c² = b²
b² = 7c²
b² is divisible by 7
that is a and b have at least one common factor 7. 
√7 is irrational
Say true or false:
$87, 54, 0, -13, -4.7, \sqrt{5}, 2{1}{7}, \sqrt{15}, -{8}{7}, 3\sqrt{2}, 4.807, 0.002, \sqrt{16}$ and $2+\sqrt{3}.$ are rational numbers
 
  1. True

  2. False


Correct Option: B
Explanation:

$\sqrt { 5 } ,\quad \sqrt { 15 } ,\quad 3\sqrt { 2 } ,\quad 2\quad +\sqrt { 3 } $ are irrational numbers as they cannot be expressed as a ratio.

Say True or False
$3+2\sqrt 5$ is an irrational number

  1. True

  2. False


Correct Option: A
Explanation:

Let us assume, to the contrary, that $3+2\sqrt{5}$ is rational.


That is, we can find coprime integers $a$ and $b$ $(b0)$ such that $3+2\sqrt{5}=\dfrac{a}{b}$.

Therefore, $\dfrac{a}{b} - 3=2\sqrt{5}$

$\dfrac{a-3b}{b}=2\sqrt{5}$

$\dfrac{a-3b}{2b}=\sqrt{5}$

$\dfrac{a}{2b}-\frac{3}{2}=\sqrt{5}$

Since $a$ and $b$ are integers, we get $\dfrac{a}{2b}-\dfrac{3}{2}$ is rational, and so $\dfrac{a-3b}{2b}=\sqrt{5}$ is rational.

But this contradicts the fact that $\sqrt{5}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $3+2\sqrt{5}$ is rational.
So, we conclude that  $3+2\sqrt{5}$ is irrational.

Say true or false:$0.120 1200 12000 120000 $....is a rational number

  1. True

  2. False


Correct Option: B
Explanation:

Given, $0.120 1200 12000 120000 ....$
Since, the decimal expansion is neither terminating nor non-terminating repeating, therefore, the given real number is not rational.
they are not rational, so we can't write of the form $\displaystyle \frac {p}{q}$.

State True or False.

$\sqrt{4}$ is an irrational number.

  1. True

  2. False


Correct Option: B
Explanation:

$\sqrt { 4 } =2\ The\quad decimal\quad representation\quad is\quad terminating.\ Hence,\quad \sqrt { 4 } is\quad a\quad rational\quad number.\ \quad $

The number $\displaystyle\frac{3-\sqrt{3}}{3+\sqrt{3}}$ is 

  1. Rational

  2. Irrational

  3. Both

  4. Can't say


Correct Option: B
Explanation:

$Here,\quad we\quad will\quad carry\quad out\quad rationalization.\quad \ \frac { 3-\sqrt { 3 }  }{ 3+\sqrt { 3 }  } =\frac { 3-\sqrt { 3 }  }{ 3+\sqrt { 3 }  } x\frac { 3-\sqrt { 3 }  }{ 3-\sqrt { 3 }  } =\frac { { (3-\sqrt { 3 } ) }^{ 2 } }{ (3+\sqrt { 3) } (3-\sqrt { 3 } ) } =\frac { 9+3-6\sqrt { 3 }  }{ 9-3 } =\frac { 12-6\sqrt { 3 }  }{ 6 } =\frac { 2-\sqrt { 3 }  }{ 1 } \ Since\quad \sqrt { 3 } is\quad irrational\quad number\quad and\quad subtraction\quad of\quad rational\quad and\quad irrational\quad is\quad irrational.\ The\quad given\quad expression\quad is\quad irrational.\ \quad $

Give an example of two irrational numbers, whose sum is a rational number

  1. $4 +\sqrt{5},-\sqrt{5}$

  2. $4 +\sqrt{5},\sqrt{5}$

  3. $4 -\sqrt{5},-\sqrt{5}$

  4. $ 2+\sqrt{5},2+\sqrt{5}$


Correct Option: A
Explanation:

Let be the Number are $\sqrt{5}  and  -\sqrt{5}$
Sum of Number  $\left(\sqrt{5}\right) + \left(-\sqrt{5}\right)$
$\sqrt{5}-\sqrt{5} = 0$
Which is a rational number