Tag: introduction to work and energy

Questions Related to introduction to work and energy

Which of the following is different from the others?

  1. Joule

  2. Kilowatt hour

  3. Erg

  4. Watt


Correct Option: D
Explanation:

Joule, kilowatt Hour and Ergs are different units of the physical quantity Energy.


Watt is a unit of Power

Hence, Option D is correct

Number of kilowatt-hours = $\displaystyle \frac{volt \times ampere \times  \,...........}{1000}$

  1. time in seconds

  2. time in minutes

  3. time in hours

  4. time in days


Correct Option: C
Explanation:

Power, $P=VI$

1 kilowatt-hour means $P=1 kW=1000 W$ and time $t=1 hour$
As kWh is the unit of electrical energy so $1 kWh=VIt/1000$. 
Thus, time will be in hour. 

Which of the following is the biggest unit of energy?

  1. Joule

  2. Kilowatt hour

  3. Erg

  4. Electron volt


Correct Option: B
Explanation:

Since, we know that SI unit of energy is represented by Joule. Hence, let us convert all the different units in the form of Joules. 


Option A- 
1 Joule= $1\quad Joule\quad =\quad [kg]{ [\frac { m }{ s } ] }^{ 2 }$

Option B-
$kWh\quad =\quad 1000W\times 3600s\quad =\quad 3600000\quad W\times s$

As we know that 1 Ws = 1 Joule

So 1 kWh= 3600000 Joules

Option C- 
$1\quad Joule\quad =\quad [kg]{ [\frac { m }{ s } ] }^{ 2 }=\quad \left[ 1000\quad gm \right] \left[ \frac { 100\quad cm }{ 1\quad s }  \right] \left[ \frac { 100\quad cm }{ 1\quad s }  \right] \ S0,\quad 1\quad Joule\quad =\quad { 10 }^{ 7 }gm\frac { { cm }^{ 2 } }{ { s }^{ 2 } } \quad =\quad { 10 }^{ 7 }\quad erg\ So,\quad 1\quad erg\quad =\quad { 10 }^{ -7 }Joule$

Option D- 
Electron Volt is the unit of energy in terms of change in energy for one electron in the potential difference of one volt. So, mathematically it is-

$1\quad ev\quad =\quad Charge\quad of\quad one\quad electron\quad \times \quad 1\quad Volt\quad =\quad 1.6\quad \times { 10 }^{ -19 }Coloumb\quad \times \quad 1\frac { Joule }{ Coloumb } \ So,\quad 1\quad ev=\quad =\quad 1.6\quad \times { 10 }^{ -19 }Joule$

Hence, Option B is the largest unit of energy and hence it is practically used in everyday life of electric consumption. 

How many joules are there in one kilowatt hour?

  1. ${35 \times 10 ^6 }$ J

  2. ${3.5 \times 10 ^6 }$ J

  3. ${36 \times 10 ^6 }$ J

  4. ${3.6\times 10 ^6 }$ J


Correct Option: D
Explanation:

As, $1kW=1000W ; 1hr=3600s$
$1kWh=1000Wh=3600000=3.6\times10^6Ws=3.6\times10^6J$

Electron volt is the unit of

  1. energy

  2. potential difference

  3. charge

  4. charge to mass


Correct Option: A
Explanation:

We know that the electrical potential energy of electron $U=eV$ where e is the charge of electron and V be the voltage. So electron volt will be the unit of energy.  

The ratio of SI units to CGS units of energy is

  1. 10$^5$

  2. 10$^6$

  3. 10$^7$

  4. 10$^{-7}$


Correct Option: C
Explanation:

Unit of energy is $ML^2T^{-2}$ 

So in  $CGS$ unit, mass = gram, length = centimeter, time = second.
And in $SI$ unit, mass = kilo gram, length = meter ,time = second.
So ratio of both SI to CGS

=$\dfrac{kg.m^2.s^{-2}  }{g.cm^2.s^{-2}}$

=$\dfrac {1000g.100^2cm^2.s^{-2}}{g.cm^2s^{-2}}$

=$10^7$.

1 horse power is equal to

  1. 740 watts

  2. 746 watts

  3. 648 watts

  4. 748 watts


Correct Option: B
Explanation:

1 horse power is equal to 746 watts.

i.e. $1 \ H.P.=746W$.

1 kWh equals

  1. $ 3.6 \times 10^6 J$

  2. $ 3.6 \times 10^7 J$

  3. $ 3.6 \times 10^8 J$

  4. $ 3.6 \times 10^{-6} J$


Correct Option: A
Explanation:

1 watt is defined as 1 joule/second.

So $1kW = 1000W$, and $1 hour =60 \times 60 seconds $

So $1kWh = 3600kWs = 3,600,000Ws = 3,600,000J$

$1kWh=3.6*{{10}^{6}}J$

One kWh is equal to

  1. $3.6 \times 10^6 J$

  2. $3.6 \times 10^5 J$

  3. $3.6 \times 10^4 J$

  4. $3.6 \times 10^3 J$


Correct Option: A
Explanation:

Watt is defined as joule per second. Kilowatt is $10^3$joule per second and kwh is kilowatt hour $10^3\times60\times60$ 

So 1kwh=$3.6\times10^7$J. 

The number of joules that is equal in value to 1 kWh is.

  1. $3.6\times 10^8$

  2. $0.36\times 10^4$

  3. $3.6\times 10^5$

  4. $3.6\times 10^6$


Correct Option: D
Explanation:

1 kWh is equal to 3.6 $\times$ 10$^{6}$

1 Watt-sec  is a Joule a watt expended for a second.

Because there’s 3600 seconds in an hour,

then 3600 Ws = 1 Wh = 3600 Joules = 3.6 kJ

so 1000 Wh = 1 kWh = 1000 $\times$ 3.6 kJ = 3.6 MJ = 3.6 $\times$ 10$^{6}$