Tag: collision of two rigid bodies

Questions Related to collision of two rigid bodies

A sphere $A$ moving with speed $u$ and rotating with an angular velocity $\omega$ makes a head-on elastic collision with an identical stationary sphere $B$. There is no friction between the surfaces of $A$ and $B$. Choose the correct alternative(s). Discard gravity.

  1. $A$ will stop moving but continue to rotate with an angular velocity $\omega$

  2. $A$ will come to rest and stop rotating

  3. $B$ will move with speed $u$ without rotating

  4. $B$ will move with speed $u$ and rotate with an angular velocity $\omega$.


Correct Option: A,C
Explanation:
Let $m$ be the mass of sphere and $v _1$ and $v _2$ be the velocities of the spheres A and B respectively after the collision.
Applying conservation of linear momentum:        $P _i = P _f$
$m  u + 0 = mv _1  + mv _2           \implies v _1 + v _2 = u$      ........(1)
Also $\dfrac{v _2- v _1}{ u-0} = -1         \implies v _1 - v _2 = -u$  
On solving we get,       $v _1 = 0 $   and $v _2 = u$
Thus A will stop and B will move with $u$
Also as there is no friction between the A and B, thus there will be no torque. Hence angular velocities of the respective spheres must remains the same as it was initially.
So, A will continue to rotate with $w$ whereas B will not rotate.

A 20 g ball is fired horizontally toward a 100 g ball that is hanging motionless from a 1.0-m-long string. The balls undergo a head-on, elastic collision, after which the 100 g ball swings out to a maximum angle of 50 degrees. Determine the initial speed of the 20 g ball.

  1. 8.4m/s

  2. 4.2m/s

  3. 2.1m/s

  4. 16.8m/s


Correct Option: A
Explanation:

At first we can find the final velocity of the $100\ g$ ball.

$ \dfrac { { m } _{ 2 }{ { v } _{ 2 } }^{ 2 } }{ 2 } =mgh={ m } _{ 2 }gl(1-cos\alpha )$

$ \implies { v } _{ 2 }=\sqrt { 2gl\left( 1-cos\alpha  \right)  } =\sqrt { 2*9.81*1.1(1-cos{ 50 }^{ o }) } =2.78m/s $

Now applying conservation of the momentum principle, we get:

$ { m } _{ 1 }{ V } _{ 1 }+{ m } _{ 2 }{ V } _{ 2 }={ m } _{ 1 }{ v } _{ 1 }+{ m } _{ 2 }{ v } _{ 2 }$

$ { v } _{ 1 }=\dfrac { { m } _{ 1 }{ V } _{ 1 }-{ m } _{ 2 }{ v } _{ 2 } }{ { m } _{ 1 } } ={ V } _{ 1 }-{ v } _{ 2 }\dfrac { { m } _{ 2 } }{ { m } _{ 1 } } $

Principle of kinetic energy conservation , we get 

$ \dfrac { 1 }{ 2 } { m } _{ 1 }{ { { V } _{ 1 } }^{ 2 } }+\dfrac { 1 }{ 2 } { m } _{ 2 }{ { V } _{ 2 } }^{ 2 }=\dfrac { 1 }{ 2 } { m } _{ 1 }{ { v } _{ 1 } }^{ 2 }+\dfrac { 1 }{ 2 } { m } _{ 2 }{ { v } _{ 2 } }^{ 2 }$


$ { v } _{ 1 }={ V } _{ 1 }-{ v } _{ 2 }\dfrac { { m } _{ 2 } }{ { m } _{ 1 } } \ { V } _{ 2 }=0$

$\implies { V } _{ 1 }=\dfrac { { { { { m } _{ 1 } }^{ 2 }v } _{ 1 } }^{ 2 }+{ m } _{ 2 }{ m } _{ 1 }{ { v } _{ 2 } }^{ 2 } }{ 2{ m } _{ 1 }{ v } _{ 2 }{ m } _{ 2 } } =\dfrac { v _{ 2 }\left( { m } _{ 2 }+{ m } _{ 1 } \right)  }{ 2{ m } _{ 1 } } $

$ \implies  \dfrac { 2.78\left( 0.1+0.024 \right)  }{ 2*0.024 } =8.4m/s$