Tag: pair of bisectors of angles

Questions Related to pair of bisectors of angles

$\displaystyle ax^{2}+2hxy+by^{2}=0$ represents a pair of straight lines through origin & angle between them is given by
$\displaystyle \tan \theta=\frac{2\sqrt{h^{2}-ab}}{a+b}$. If the lines are perpendicular then $\displaystyle a+b=0 $ and the equation of bisectors is given by  $\displaystyle \frac{x^{2}-y^{2}}{a-b}=\frac{xy}{h}$
The general equation of second degree given by
$\displaystyle ax^{2}+2hxy+by^{2}+2gx+2fy+c=0$ represent a pair of straight lines if $\displaystyle \triangle =0 $ or 
$ \displaystyle \begin{vmatrix}a&h  &g \\ h&b  &f \\ g&f  &c \end{vmatrix}=0 $ or $\displaystyle abc+2fgh-af^{2}-bg^{2}-ch^{2}=0$
On the basis of above information answer the following question

Let $\displaystyle  f _{1}\left (x,y  \right )=ax^{2}+2hxy+by^{2}=0$ and let $\displaystyle  f _{i+1}\left (x,y  \right )=0 $ denotes the equation of bisectors of $\displaystyle  f _{i}\left (x,y  \right )=0 \forall $ $ i=1,2,3 $ then equation of $\displaystyle  f _{3}\left (x,y  \right )=0$ is

  1. $\displaystyle \left (a-b \right )x^{2}-4hxy+\left (a-b \right )y^{2}=0 $

  2. $\displaystyle \left (a-b \right )x^{2}-4hxy-\left (a-b \right )y^{2}=0 $

  3. $\displaystyle \left (a-b \right )x^{2}+4hxy-\left (a-b \right )y^{2}=0 $

  4. $\displaystyle \left (a-b \right )x^{2}+4hxy+\left (a-b \right )y^{2}=0 $


Correct Option: C

The sum and product of the slopes of a pair of straight lines are the arithmetic and the geometric means of 9 and 16 respectively. The equation of the bisectors of the angles between the lines through the origin are 

  1. $24x^{2}-25xy+2y^{2}=0$

  2. $25x^{2}+44xy-25y^{2}=0$

  3. $11x^{2}-25xy-11y^{2}=0$

  4. none of these


Correct Option: B
Explanation:

Let the equation of lines passing through origin be $y-m _1x=0,y-m _2x=0$
$\therefore$The combined equation of pair of straight lines $=(y-m _1x)(y-m _2x)=0$

$\Rightarrow m _1m _2x^2-(m _1+m _2)xy+y^2=0$

But given sum of the slopes ,$m _1+m _2=\frac{(9+16)}{2}=\frac{25}{2}$
product of the slopes ,$m _1m _2=\sqrt(9*16)=12$
On subtituting these values in the above equation.
$\Rightarrow 12x^2-\displaystyle\frac{25}{2}xy+y^2=0$

$\Rightarrow 24x^2-25xy+2y^2=0$ comparing with general equation of pair of straight lines passing through origin $ax^2+2hxy+by^2=0$
$\Rightarrow a=224,h=\displaystyle\frac{-25}{2},b=2$
If $ax^2+2hxy+cy^2=0$ is pair of equation of line passing through origin then pair of equation of the angular bisector of these pair of lines is obtained by
 $h
(x^2-y^2)=(a-b)xy$

$\therefore$ The required pair of equation of angular bisector is $h(x^2-y^2)=(a-b)xy$
$\Rightarrow \displaystyle\frac{-25}{2}
(x^2-y^2)=(24-2)xy$
$\Rightarrow \displaystyle\frac{25}{2}*(x^2-y^2)=-22xy$

$\Rightarrow (25x^2-25y^2)=-44xy$

$\Rightarrow 25x^2+44xy-25y^2=0$

If $\displaystyle y=mx$ bisects the angle between the lines $\displaystyle x^{2}\left ( \tan ^{2}\theta +\cos ^{2}\theta  \right )+2xy\tan \theta -y^{2}\sin ^{2}\theta =0$  when $\displaystyle \theta =\dfrac\pi3$ the value of $m$ is

  1. $\displaystyle \frac{-2- \sqrt 7}{ \sqrt 3}$

  2. $\displaystyle \frac{ \sqrt 7-2}{ \sqrt 3}$

  3. $\displaystyle 2 \sqrt 7 $

  4. $\displaystyle 2 \sqrt 3 $


Correct Option: A,B
Explanation:
Equation of the bisectors of the angles between the given lines is

$\displaystyle \dfrac{x _2-y _2}{a-b}=\dfrac{xy}{h }$

Equation of the bisectors of the angles between the given lines is
$\displaystyle \frac{x^{2}-y^{2}}{\tan ^{2}\theta +\cos ^{2}\theta +\sin ^{2}\theta }=\frac{xy}{\tan \theta }$

$\displaystyle \Rightarrow \frac{x^{2}-y^{2}}{1+\tan ^{2}\theta  }=\frac{xy}{\tan \theta }$

$\displaystyle \Rightarrow \frac{x^{2}-y^{2}}{1+3  }=\frac{xy}{\sqrt 3 } \ when \ \ \theta=\pi/3$

Which satisfied by $y=mx $ if

$\displaystyle \frac{1-m^{2}}{4}=\frac{m}{\sqrt 3}$

$\displaystyle \Rightarrow \sqrt 3 m^{2}+4m-\sqrt 3=0$

$\displaystyle \Rightarrow m=\frac{-2\pm \sqrt 7}{\sqrt 3}$

If two of the lines represented by $ x^{4} + x^{3} y + cx^{2}y^{2} -xy^{3} + y^{4} =0$ bisect the angle between the other two, then the value of $c$ is

  1. $0$

  2. $-1$

  3. $1$

  4. $-6$


Correct Option: D
Explanation:

Since the product of the slopes of the four lines represented by the given equation is $1$ and a pair of lines represent the bisectors of the angles between the other two, the product of the slopes of each pair is $-1$. So let the equation of one pair be $ax^{2} + 2hxy -ay^{2} = 0$

The equation of its bisectors is $ \displaystyle \frac{x^{2}-y^{2}}{2a}=\frac{xy}{h} $

By hypothesis $ x^{4} +x^{3}y + cx^{2} y^{2}-xy^{3} + y^{4} $ $= (ax^{2} + 2hxy -ay^{2}) (hx^{2} -2axy -hy^{2})$ 

$ = ah(x^{4} + y^{4}) + 2(h^{2} -a^{ 2}) (x^{3}y- xy^{3}) -6ahx^{2}y^{2} $ 

Comparing the respective coefficients we get

$ah = 1 $ and $c = -6ah = -6$

The line $y=3x$ bisects the angle between the lines $ax^{2}+2axy+y^{2}=0$ if ${a}=$ 

  1. $3$

  2. $11$

  3. $\displaystyle \frac{3}{11}$

  4. $\displaystyle \frac{11}{3}$


Correct Option: C
Explanation:

Pair of angle bisectors represented by
$ax^2+2hxy+by^2=0$   is given by
$\dfrac{x^2-y^2}{a-b}=\dfrac{xy}{h}$
$\therefore ax^2+2axy+y^2=0$
pair of angle bisector is,
$\dfrac{x^2-y^2}{a-1}=\dfrac{xy}{a}$
$ax^2-ay^2=(a-1)xy$
Given  $ y=3x$  is one of angle bisector of given lines
$m=\dfrac{y}{x},$        $am^2+(a-1)x-a=0$
$m=3$ is satisfied to this equation
$9a+3a-3-a=0$
$11a=3$
$\therefore a=\dfrac{3}{11}$

The angle of intersection of the curves  $x ^ { 2 } + 4 y ^ { 2 } = 32$  and  $x ^ { 2 } - y ^ { 2 } = 12$  at any point of their intersection is

  1. $\dfrac { \pi } { 6 }$

  2. $\dfrac { \pi } { 4 }$

  3. $\dfrac { \pi } { 3 }$

  4. $\dfrac { \pi } { 2 }$


Correct Option: A
Explanation:
${ x }^{ 2 }+{ 4y }^{ 2 }=32\quad \longrightarrow \left( i \right) $
${ x }^{ 2 }-{ y }^{ 2 }=12\quad \longrightarrow \left( ii \right) $
Solving, $y=\pm 2$
              $x=\pm 4$
$\therefore$   Point of ${ X }^{ n }$ are $\left( 4,2 \right) ,\left( 4,-2 \right) ,\left( -4,2 \right) ,\left( -4,-2 \right) $
At $(4,2)$
${ m } _{ 1 }=\dfrac { -x }{ 4y } $    [differentiating $(i)$ wrt $x$]
$=\dfrac { 2 }{ -16 } =\dfrac { -1 }{ 8 } $
${ m } _{ 2 }=y/x$    [differentiating $(ii)$ wrt $x$]
$=\dfrac { 2 }{ 4 } =\dfrac { 1 }{ 2 } $
$\tan\theta =\dfrac { \left| { m } _{ 1 }-{ m } _{ 2 } \right|  }{ 1+{ m } _{ 1 }{ m } _{ 2 } } =\dfrac { \left| \dfrac { -1 }{ 8 } -\dfrac { 1 }{ 2 }  \right|  }{ 1-\dfrac { 1 }{ 16 }  } =\dfrac { \dfrac { 2+8 }{ 16 }  }{ \dfrac { 15 }{ 16 }  } =\dfrac { 10 }{ 15 } =\dfrac { 2 }{ 3 } $
$\Rightarrow \theta ={ \tan }^{ -1 }\left( 2/3 \right) \simeq \pi /6$              [A]

Family of lines represented by the equation $(\cos \theta)x+(\cos \theta -\sin \theta)y-3(3\cos \theta+\sin \theta)=0$ passes through a fixed point $M$ for all real value of $\theta$. Find $M$ 

  1. $(6,3)$

  2. $(3,6)$

  3. $(-6,2)$

  4. $(3,-6)$


Correct Option: A
Explanation:

Let us consider the problem:

$\left( {\left( {\cos \theta  + \sin \theta } \right)x + \cos \theta  - \sin \theta } \right)y - 3\left( {3\cos \theta  + \sin \theta } \right) = 0$
$ \Rightarrow \cos \theta \left( {x + y - 9} \right) + \sin \theta \left( {x - y - 3} \right) = 0$
$ \Rightarrow $ $\left( {x + y - 9} \right) + \tan \theta \left( {x - y - 3} \right) = 0$
${L _1} + K{L _2} = 0$(pass through intersection of ${L _1}$ and ${L _2}$ for all value of $K$)
$x+y-9=0$
$ \Rightarrow $ $x - y - 3 = 0$ 
Hence,
$x+y=9$
$x-y=3$
hence the intersection point is $(6,3)$

If the equation $a{x}^{2}+2hxy+b{y}^{2}=0$ represents a pair of lines then  the equation of the pair of lines of angular bisectors is $h({x}^{2}-{y}^{2})-(a-b)xy=0$

  1. True

  2. False


Correct Option: A

If the line $y = mx$ bisects the angle between the line $ax^2 + 2h\ xy + by^2 = 0$ then $m$ is a root of the quadratic equation :

  1. $hx^2 + (a - b)x - h = 0$

  2. $x^2 +h(a - b)x - 1 = 0$

  3. $(a - b)x^2 + hx - (a - b) = 0$

  4. $(a - b)x^2 - hx - (a - b) = 0$


Correct Option: A
Explanation:

Equation of bisectors of the pair of straight lines $ax^2+2hxy+by^2=0$ is

$h(x^2-y^2)-(a-b)xy=0$......(1).

Since $y=mx $ is given to be the bisector of the pair of straight lines, then the line will satisfy the equation (1).

Then we get,
$h(1-m^2)-(a-b)m=0$

$hm^2+(a-b)m-h=0$.

So $m$ satisfies the equation $hx^2+(a-b)x-h=0$.

Joint equation of perpendicular lines passing through $(0,0)$ one of which is parallel to $6x-4y+3=0$ is

  1. $6x^{2}-5xy-6y^{2}=0$

  2. $6x^{2}+5xy-6y^{2}=0$

  3. $5x^{2}+5xy-6y^{2}=0$

  4. $6x^{2}-5xy-5y^{2}=0$


Correct Option: A