Tag: further aspects of equilibria

Questions Related to further aspects of equilibria

A solution containing $Na _{2}CO _{3}$ and $NaOH$ requires $300\ mL$ of $0.1\ N\ HCl$ using phenolphthalein as an indicator. Methyl orange is then added to the above-titrated solution when a further $25\ mL$ of $0.2\ N\ HCl$ is required. The amount of $NaOH$ present in the original solution is:

  1. $0.5\ g$

  2. $1\ g$

  3. $2\ g$

  4. $4\ g$


Correct Option: B

In the titration of ${ NH } _{ 4 }OH$ with $HCl$, the indicator which cannot be used is:

  1. Phenolphthalein

  2. Methyl orange

  3. Methyl red

  4. Both orange and methyl red


Correct Option: A
Explanation:

In case of strong acid($HCl$) and weak base($NH _4OH$) phenolphthalein cannot be used as an indicator because it can detect $pH$ only in range of 8-10.

In the titration of nitric acid against potassium carbonate, the indicator used is:

  1. Methyl orange

  2. Self indicator

  3. Phenolphthalein

  4. Diphenylamine


Correct Option: A
Explanation:

In short methyl orange is used as the indicator in the titration of nitric acid against potassium carbonateIt is frequently used in titrations because of its clear and distinct colour change.

A solution containing $Fe^{2+}$ ions is titrated with $KMnO _{4}$ solution. Indicator used will be:

  1. phenolphthalein

  2. methyl orange

  3. litmus

  4. none of the above


Correct Option: D
Explanation:

Titration of ${ Fe }^{ 2+ }$ with ${ KMnO } _{ 4 }$ is an redox titration.

${ Fe }^{ 2+ }+\underbrace { 7{ MnO } _{ 4 }^{ - } } +14{ H }^{ + }={ Fe }^{ 3+ }+\underbrace { 7{ Mn }^{ 2+ } } +7{ H } _{ 2 }O$
                  violet                                     colourless
So, phenolpthalein, methyl orange and litmus are all acid base indicators. They can't be used in this redox titration. ${ KMnO } _{ 4 }$ is a self-indicator changing from violet to colourless.
$\therefore$   Answer will be $D$.

In the mixture of $NaHCO _{4}$ and $Na _{2}CO _{3}$, volume of a given $HCl$ required is $x\ mL$ with phenolphthalein indicator and $y\ mL$ with methyl orange indicator in same titration. Hence, volume of $HCl$ for complete reaction of $Na _{2}CO _{3}$ present in the original mixture is

  1. $2x$

  2. $y$

  3. $x/2$

  4. $(y - x)$


Correct Option: A

$40\ mL$ of $0.05\ M\ Na {2}CO _{3}\cdot NaHCO _{3} \cdot 2H _{2}O$ (sesquicarbonate) is titrated against $0.05\ M\ HCl.\ x\ mL$ of $HCl$ is used when phenolphthalein is the indicator and $y\ mL\ HCl$ is used when methyl orange is the indicator in two separate titrations, hence $(y - x)$ is_______.

  1. $80\ mL$

  2. $30\ mL$

  3. $120\ mL$

  4. none of the above


Correct Option: A
Explanation:
Titration of ${ Na } _{ 2 }{ CO } _{ 3 }.{ NaHCO } _{ 3 }.2{ H } _{ 2 }O$ with $HCl$ involves following reactions :
a) ${ Na } _{ 2 }{ CO } _{ 3 }+HCl\rightleftharpoons { NaHCO } _{ 3 }+NaCl$
b) ${ NaHCO } _{ 3 }+HCl\rightleftharpoons NaCl+{ H } _{ 2 }O+{ CO } _{ 2 }$
In step $a$, $40$ ml of $0.05M$ $HCl$ will react with $40$ ml of $0.05M$ ${ Na } _{ 2 }{ CO } _{ 3 }$ to form ${ NaHCO } _{ 3 }$ using phenolpthalein.
$\therefore$   $x=40$ ml
Now, in a separate titration $40$ ml of $0.05M$ $HCl$ will need to react with $0.05M$ ${ Na } _{ 2 }{ CO } _{ 3 }$ to form ${ NaHCO } _{ 3 }$. Now in the second step $b$ total $80$ ml of $0.05M$ $HCl$ will need to neutralise ${ NaHCO } _{ 3 }$ completely.
$\therefore$   $y=40+40\times 2=120$
$\therefore$   $y-x=120-40=80$ ml
Answer will be $A$.

$0.1\ N$ solution of $Na _{2}CO _{3}$ is being titrated with $0.1\ N\ HCl$, the best indicator to be used is:

  1. potassium ferricyanide

  2. phenolphthalein

  3. methyl orange

  4. litmus


Correct Option: C
Explanation:
Titration of ${ Na } _{ 2 }{ CO } _{ 3 }$ with $HCl$ involves following two reaction :
a) ${ Na } _{ 2 }{ CO } _{ 3 }+HCl\rightleftharpoons { NaHCO } _{ 3 }+NaCl$
b) ${ NaHCO } _{ 3 }+HCl\rightleftharpoons NaCl+{ H } _{ 2 }O+{ CO } _{ 2 }\quad \left\{ { H } _{ 2 }{ CO } _{ 3 }-carbonic\quad acid \right\} $
We know phenolphthalein is an indicator and it works in the basic medium that is why it causes only $50$% of neutalisation of ${ Na } _{ 2 }{ CO } _{ 3 }$ because in the step $b$ the medium turns acidic due to formation of ${ H } _{ 2 }{ CO } _{ 3 }$ and phenolphatein will not work. On the other hand methyl orange is a basic indicator and works in the acidic medium and causes $100$% neutralisation of ${ Na } _{ 2 }{ CO } _{ 3 }$.
Answer will be $C$.

Select incorrect statement(s) among the following.

  1. Phenolphthalein is suitable indicator for the titration of HCl (aq) with $NH _4OH(aq)$

  2. An acid-base indicator in a buffer solution of $pH=pK _{ln}+1$ is ionized to the extent of $\frac {1000}{11}$%

  3. In the titration of a monoacidic weak base with a strong acid, the pH at the equivalent point is always calculated by $pH=\frac {1}{2}[pK _w-pH _b-logC]$

  4. When $Na _3PO _4(aq)$ is titrated with HCl(aq), the pH of solution at second equivalent point is calculated by $\frac {1}{2}[pK _{a _1}+pK _{a _2}]$


Correct Option: A,C
Explanation:

$A.$ Phenolphthalein gives a colour change when the $pH$ range from $8.3$ to $10$ i.e., in slightly basic solution. Titration of weak base $NH _4OH$ with strong acid $HCl$ will finally make the solution acidic, and phenolpthalein will not give colour change or denote the end point correctly.

$C.$ At equivalent point, all the weak base reacts with strong acid and the salt of this base with the strong acid is formed.
For a salt of weak base and strong acid.
$pH=7-\cfrac{1}{2}[pK _b+\log C]=\cfrac{1}{2}[pK _w-pK _b-\log C]$

A solution contains $Na _{2}CO _{3}$ and $NaHCO _{3}, 10\ mL$ of this solution required $2.5\ mL$ of $0.1\ M\ H _{2}SO _{4}$ for neutralisation using phenolphthalein indicator. Methyl orange is added after first end point, further titration required $2.5\ mL$ of $0.2\ M\ H _{2}SO _{4}$. The amount of $Na _{2}CO _{3}$ and $NaHCO _{3}$ in $1$ litre of the solution is:

  1. $5.3\ g$ and $4.2\ g$

  2. $3.3\ g$ and $6.2\ g$

  3. $4.2\ g$ and $5.3\ g$

  4. $6.2\ g$ and $3.3\ g$


Correct Option: A
Explanation:
a) ${ 2Na } _{ 2 }{ CO } _{ 3 }+{ H } _{ 2 }{ SO } _{ 4 }\rightleftharpoons 2{ NaHCO } _{ 3 }+{ Na } _{ 2 }{ SO } _{ 4 }$
b) $2{ NaHCO } _{ 3 }+{ H } _{ 2 }{ SO } _{ 4 }\rightleftharpoons { Na } _{ 2 }{ SO } _{ 4 }+2{ H } _{ 2 }{ CO } _{ 3 }$
$2.5$ ml of $0.1M$ ${ H } _{ 2 }{ SO } _{ 4 }=2.5\times 0.1\times 2\times { 10 }^{ -3 }$ moles of ${ H }^{ + }$.
                                          $=0.5\times { 10 }^{ -3 }$ moles of ${ H }^{ + }$
$\therefore$   $0.5\times { 10 }^{ -3 }$ moles of ${ Na } _{ 2 }{ CO } _{ 3 }$ is present in the solution.
$2.5$ ml of $0.2M$ ${ H } _{ 2 }{ SO } _{ 4 }\equiv 2.5\times 0.2\times 2\times { 10 }^{ -3 }$ moles of ${ H }^{ + }$
                                          $=1.0\times { 10 }^{ -3 }$ moles
So total amount of ${ NaHCO } _{ 3 }$ after first end $=1\times { 10 }^{ -3 }$ moles
$\therefore$   The mixture contains $=\left( 1\times { 10 }^{ -3 }-0.5\times { 10 }^{ -3 } \right) $ moles of ${ NaHCO } _{ 3 }$.
The amount of ${ Na } _{ 2 }{ CO } _{ 3 }$ in $1$ litre solution $=\dfrac { 0.5\times { 10 }^{ -3 } }{ 10 } \times { 10 }^{ 3 }\times 106=5.3gm$
The amount of ${ NaHCO } _{ 3 }=\dfrac { 0.5\times { 10 }^{ -3 } }{ 10 } \times { 10 }^{ 3 }\times 84=4.2gm$
Find the $pH$ of the resulting solution and then mark the option in which $pH$ exists between color transition range of an indicator.

$50$ ml of $0.1$ M $HCO _3^- \ +$ $50$ ml of $0.8$ M $CO _3^{2-}$.

[For $H _2CO _3$ : $K _{a _1}=4\times 10^{-7}$ and $K _{a _2}=2\times 10^{-11}$]
  1. Phenol red (6.8 to 8.4)

  2. Propyl red 4(4.6 to 6.4)

  3. Phenolphthalein (8.3 to 10.1)

  4. Malachite green (11.4 to 13)


Correct Option: D
Explanation:
Given that
[Salt] = 0.8M   and  [Acid] = 0.1M

The solution can be regarded as acidic buffer solution containing weak acid sodium bicarbonate and its salt sodium carbonate with strong base.

The expression for the pH of the acidic buffer solution is as given below.

$pH=pK _a+log \frac {[salt]} {[acid]}$

$pK _a=-logK _a=-log [2 \times 10^{-11}]= 10.7$

Substitute values in the above solution.

$pH=10.7+log \frac {0.8} {0.1}=11.6$

Hence, the suitable indicator is Malachite green with pH range from 11.4 to 13.