Tag: ratio and proportions

Questions Related to ratio and proportions

Three numbers $A,B$ and $C$ are in the ratio $12\colon15\colon25$. If the sum of these numbers is $312$, find the ratio between the difference of $A$ and $B$ and the difference of $C$ and $B$.

  1. $\;3\colon7$

  2. $\;10\colon3$

  3. $\;3\colon10$

  4. $\;7\colon3$


Correct Option: C
Explanation:

The ratio of $A,B,C =12:15:25$
Then, total of the ratio is $12+15+25=52$
Then, $ A=\displaystyle \frac{12}{52}\times 312=72$

$B=\displaystyle \frac{15}{52}\times 312=90$

$C=\displaystyle \frac{25}{52}\times 312=150$
Then, $B-A=18$ and $C-B=60$
Hence, the required ratio $=18:60\Rightarrow 3:10$

Mark the correct alternative of the following.
If $x : y =1 : 1$, then $\dfrac{3x+4y}{5x+6y}=?$

  1. $\dfrac{7}{11}$

  2. $\dfrac{17}{11}$

  3. $\dfrac{17}{23}$

  4. $\dfrac{4}{5}$


Correct Option: A
Explanation:

Given, $x:y=1:1$

or, $\dfrac{x}{y}=\dfrac{1}{1}$
or,  $x=y$......(1)

Now,
$\dfrac{3x+4y}{5x+6y}$
$=\dfrac{7x}{11x}$ [ Using (1)]
$=\dfrac{7}{11}$.

The given property $a : b :: c : d$ then $(a - b) : b :: (c - d) : d.$ is known as

  1. Alternendo property

  2. Dividendo property

  3. Componendo property

  4. Invertendo Property


Correct Option: B
Explanation:

If $\dfrac{a}{b}=\dfrac{c}{d},$ then by dividendo property

$\dfrac{a-b}{b}=\dfrac{c-d}{d}\Rightarrow (a-b):b::(c-d):d$

After applying invertendo to $1:2::8:9$ we get:

  1. $2:1::9:8$

  2. $1:8::2:9$

  3. $8:9::1:2$

  4. $1:9::8:2$


Correct Option: A
Explanation:

If $a : b :: c : d$ then $b : a :: d : c$ is invertendo property of ratios

We have $1:2::8:9$
After applying invertendo we get
$2:1::9:8$
Option A is correct

The given property $a : b :: c : d$ then $a : c :: b : d$ is known as:

  1. Componendo property

  2. Dividendo property

  3. Invertendo property

  4. Alternendo property


Correct Option: D
Explanation:
If $\dfrac{a}{b}=\dfrac{c}{d}$ then, by alternedo

$\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow a:c::b:d$

If $\displaystyle \frac{x}{y}=\frac{6}{5}$ then $\displaystyle \frac{x^{2}+y^{2}}{x^{2}-y^{2}}$ is:

  1. $\displaystyle \frac{36}{25}$

  2. $\displaystyle \frac{25}{36}$

  3. $\displaystyle \frac{61}{11}$

  4. $\displaystyle \frac{11}{61}$


Correct Option: C
Explanation:

$\displaystyle \frac{x}{y}=\frac{6}{5}$

$x = 6k, y = 5k$

$\displaystyle \frac{x^{2}+y^{2}}{x^{2}-y^{2}}=\frac{\left ( 6k \right )^{2}+\left ( 5k \right )^{2}}{\left ( 6k \right )^{2}-\left ( 5k \right )^{2}}=\frac{61k^{2}}{11k^{2}}=\frac{61}{11}$

If $x=\cfrac { 4ab }{ a+b } $ then value of $\cfrac { x+2a }{ x-2a } +\cfrac { x+2b }{ x-2b } $

  1. $a$

  2. $b$

  3. $0$

  4. $2$


Correct Option: D
Explanation:

Given, $x = 4ab/(a+b)$

=> $x = 2a\times 2b / (a+b)$
=> $x/2a = 2b / (a+b)$
Using componendo and dividendo 
=> $x+2a / x-2a = 2b+a+b / 2b-a-b$
=> $x+2a / x-2a = 3b+a / b-a$

Similarly, $x+2b / x-2b = 3a+b / a-b$

Now, adding both,
$[x+2a / x-2a] + [x+2b / x-2b ] = [3b+a / b-a ] + [ 3a +b / a-b ]$
RHS => $[3b+a / b-a ] - [ 3a+b / b-a ]$
=> $3b+a-3a-b / b-a$
=> $2b-2a / b-a$
=> $2(b-a)/b-a$
=> $2$

Hence, LHS $= 2$ 

If $a : b = c : d = e : f$, then the value of each ratio is $(a + c + e) : (b + d + f)$
This property is called as 

  1. Componendo property

  2. Convertendo property

  3. Addendo property

  4. Dividendo property


Correct Option: C
Explanation:

$\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{e}{f}=k$

$a=bk,c=dk,e=fk\ \Rightarrow \dfrac{a+c+e}{b+d+f}=\dfrac{bk+dk+fk}{b+d+f}=k\ \Rightarrow a:b=c:d=e:f=(a+c+e):(b+d+f) $
addendo property

 $\dfrac{a+be^y}{a-be^y} = \dfrac{b+ce^y}{b-ce^y}  =  \dfrac{c+de^y}{c-de^y}$, then $a,b,c,d$  are  in

  1. $A.P.$

  2. $G.P.$

  3. $H.P.$

  4. $A.G.P.$


Correct Option: B

If $\cfrac { { a }^{ 3 }+3a{ b }^{ 2 } }{ 3{ a }^{ 2 }b+{ b }^{ 3 } } =\cfrac { { x }^{ 3 }+3x{ y }^{ 2 } }{ 3{ x }^{ 2 }y+{ y }^{ 3 } } $ then

  1. $bx=ay$

  2. $by=ax$

  3. ${ b }^{ 2 }y={ a }^{ 2 }x$

  4. ${ b }^{ 2 }x={ a }^{ 2 }y$


Correct Option: A
Explanation:

$\dfrac{{{a^3} + 3a{b^2}}}{{3{a^2}b + {b^3}}} = \dfrac{{{x^3} + 3x{y^2}}}{{3{x^2}y + {y^3}}}$


Use of compodendo and Devidendo

$\dfrac{{{a^3} + 3a{b^2} + 3{a^2}b + {b^3}}}{{3{a^2}b + {b^3} - 3{a^2}b + {b^3}}} = \dfrac{{{x^3} + 3x{y^2} + 3{x^2}y + {y^3}}}{{3{x^2}y + {y^3} - 3{x^2}y + {y^3}}}$

$ \Rightarrow \dfrac{{{{\left( {a + b} \right)}^3}}}{{{{(a - b)}^3}}} = \dfrac{{{{\left( {x + y} \right)}^3}}}{{{{(x - y)}^3}}}$

$ \Rightarrow {\left( {\dfrac{{a + b}}{{a + b}}} \right)^3} = {\left( {\dfrac{{x + y}}{{x - y}}} \right)^3}$

$ \Rightarrow \dfrac{{a + b}}{{a - b}} = \dfrac{{x + y}}{{x - y}}$

$ \Rightarrow \left( {a + b} \right)\left( {x + y} \right) = \left( {x + y} \right)\left( {a - b} \right)$

$ \Rightarrow ax{\text{ }} - {\text{ }}ay{\text{ }} + {\text{ }}bx{\text{ }} - {\text{ }}by{\text{ }} = {\text{ }}xa{\text{ }} - {\text{ }}xb{\text{ }} + {\text{ }}ay{\text{ }} - {\text{ }}yb$

$ \Rightarrow bx{\text{ }} + {\text{ }}xb{\text{ }} = {\text{ }}ay{\text{ }} + {\text{ }}ay$

$ \Rightarrow 2bx{\text{ }} = {\text{ }}2ay$

$ \Rightarrow bx{\text{ }} = {\text{ }}ay$