Tag: minors and cofactors
Questions Related to minors and cofactors
$A,B,C$ are cofactors of elements, $\mathrm{a},\ \mathrm{b},\ \mathrm{c}$ in
${\begin{bmatrix}
a & b & c\
2 & 4 & 7\
-1 & 0 & 3
\end{bmatrix}}$ then the value of $(2\mathrm{A}+4\mathrm{B}+7\mathrm{C})$
is equal to
If $\displaystyle A=\left[ { a } _{ ij } \right] $ is a $4 \times 4$ matrix and $\displaystyle { c } _{ ij }$ is the co-factor of the element $\displaystyle { a } _{ ij }$ in $\displaystyle \left| A \right| $, then the expression $\displaystyle { a } _{ 11 }{ c } _{ 11 }+{ a } _{ 12 }{ c } _{ 12 }+{ a } _{ 13 }{ c } _{ 13 }+{ a } _{ 14 }{ c } _{ 14 }$ equals
If in $\displaystyle \left[ \begin{matrix} { a } _{ 1 } \ { a } _{ 2 } \ { a } _{ 3 } \end{matrix}\begin{matrix} { b } _{ 1 } \ { b } _{ 2 } \ { b } _{ 3 } \end{matrix}\begin{matrix} { c } _{ 1 } \ { c } _{ 2 } \ { c } _{ 3 } \end{matrix} \right] $, the cofactor of $\displaystyle { a } _{ r }$ is $\displaystyle { A } _{ r }$, then $\displaystyle { c } _{ 1 }{ A } _{ 1 }+{ c } _{ 2 }{ A } _{ 2 }+{ c } _{ 3 }{ A } _{ 3 }$ is
If $A=\begin{bmatrix} 3 & 2 & 4 \ 1 & 2 & 1 \ 3 & 2 & 6 \end{bmatrix}$ and $A _{ij}$ are the cofactors of $a _{ij}$, then $a _{11}A _{11}+a _{12}A _{12}+a _{13}A _{13}$ is equal to
If ${A} _{1}, {B} _{1}, {C} _{1}..$ are respectively the co-factor of the elements ${a} _{1}, {b} _{1}, {c} _{1}$.
$\triangle =\begin{vmatrix} { a } _{ 1 } & { b } _{ 1 } & { c } _{ 1 } \ a _{ 2 } & { b } _{ 2 } & { c } _{ 2 } \ { a } _{ 3 } & { b } _{ 3 } & { c } _{ 3 } \end{vmatrix}$, then $\begin{vmatrix} { B } _{ 2 } & C _{ 2 } \ B _{ 3 } & C _{ 3 } \end{vmatrix}$
If $\Delta =\left| \begin{matrix} { a } _{ 1 } & { b } _{ 1 } & { c } _{ 1 } \ { a } _{ 2 } & { b } _{ 2 } & { c } _{ 2 } \ { a } _{ 3 } & { b } _{ 3 } & { c } _{ 3 } \end{matrix} \right|$ and $A _{1},B _{1},C _{1}$ denote the co-factors of $a _{1},b _{2},c _{1}$ respectively, then the value of the determinant $\left| \begin{matrix} { A } _{ 1 } & { B } _{ 1 } & { C } _{ 1 } \ { A } _{ 2 } & { B } _{ 2 } & { C } _{ 2 } \ { A } _{ 3 } & { B } _{ 3 } & { C } _{ 3 } \end{matrix} \right|$ is
If $\Delta =\begin{vmatrix} a _{11} & a _{12} & a _{13}\ a _{21} & a _{22} & a _{23}\ a _{31} & a _{32} & a _{33} \end{vmatrix}$ and $c _{ij}=\left ( -1 \right )^{i+j}$ (determinant obtained by deleting ith row and jth column), then $\begin{vmatrix} c _{11} & c _{12} & c _{13}\ c _{21} & c _{22} & c _{23}\ c _{31} & c _{32} & c _{33} \end{vmatrix}=\Delta ^{2}$
x^{3}-1 & 0 & x-x^{4}\
0 & x-x^{4} & x^{3}-1\
x-x^{4} & x^{3}-1 & 0
\end{vmatrix}$, then
Let $\Delta _0=\begin{bmatrix}a _{11} & a _{12} & a _{13}\a _{21} & a _{22} &a _{23} \ a _{31} & a _{32} & a _{33}\end{bmatrix}$ (where $\Delta _0 \neq 0$) and let $\Delta _1$ denote the determinant formed by the cofactors of elements of $\Delta _0$ and $\Delta _2$ denote the determinant formed by the cofactor at $\Delta _1$ and so on $\Delta _n$ denotes the determinant formed by the cofactors at $\Delta _{n-1}$ then the determinant value of $\Delta _{n}$ is
- ← Previous
- 1
- 2
- 3
- Next →