Tag: mean free path

Questions Related to mean free path

There are two vessels of same consisting same no of moles of two different gases at same temperature . One of the gas is $CH _{4}$ & the other is unknown X. Assuming that all the molecules of X are under random motion whereas in $CH _{4}$ except one all are stationary. Calculate $Z _{1}$ for X in terms of $Z _{1}$ of $CH _{4}$. Given that the collision diameter for both gases are same & $\displaystyle (U _{rms}) _{x}=\frac{1}{\sqrt{6}}(Uav) _{CH _{4}}$.

  1. $\displaystyle \frac{2\sqrt{2}}{3\sqrt{\pi }}Z _{1}$

  2. $\displaystyle \frac{3\sqrt{2}}{2\sqrt{\pi }}Z _{1}$

  3. $\displaystyle \frac{2\sqrt{3}}{2\sqrt{\pi }}Z _{1}$

  4. $\displaystyle \frac{4\sqrt{2}}{3\sqrt{\pi }}Z _{1}$


Correct Option: A
Explanation:

V, n, T $\rightarrow  same$(25) so $P\rightarrow $ also same ( P  5  25)
$\displaystyle \sigma \rightarrow same (25)$
given

$\displaystyle (v {rms})\times

x=\dfrac{1}{\sqrt{6}}(v _{avg.}) _{CH _{4}}$ &

$v _{rms}=\sqrt{\dfrac{3\pi }{8}}(v _{avg.})$ so
$\displaystyle \sqrt{\dfrac{3\pi }{8}}(v _{avg.}) _{CH _{4}}$
$\displaystyle \dfrac{(v _{avg.})x}{(v _{avg.}) _CH _{4}}=\sqrt{\dfrac{8}{3\pi }}.\frac{1}{\sqrt{6}}=\dfrac{2}{3\sqrt{\pi }}$
For X (9< ) : $\displaystyle Z _{1}=\sqrt{2}\pi \sigma ^{2}(v _{avg.}) _{x}N^{\ast }$
For CH
{4} (9< ) : $\displaystyle Z _{1}=\pi \sigma ^{2}(v _{avg.}) _{CH _{4}}N^{\ast }$
Since T, P, v, n are same, $N\ast $ will also be same.
$\displaystyle



\frac{Z _{1}X}{Z _{1}(CH _{4})}=\sqrt{2}\frac{(v _{avg.}) _{x}}{(v _{avg.}) _{CH _{4}}}=\sqrt{2}.\frac{2}{3\sqrt{\pi

}}$
$\displaystyle Z _{1}(X)=Z _{1}(CH _{4}).\frac{2\sqrt{2}}{3\sqrt{\pi }}$