Tag: elastic energy

Questions Related to elastic energy

Two wires of different materials, each $2$m long and of diameter $2\,$mm, are joined in series to form a composite wire. What force will produce a total extension of $0.9$mm. $(Y _1=2\times 10^{11}\ Pa$ & $Y _2=6\times 10^{11}\ Pa)$.

  1. $282.6$ N

  2. $212$ N

  3. $319.8$ N

  4. $382.6$ N


Correct Option: B
Explanation:

Given.

Length of both wires, $L=2\,m$

Radius of both wires, $d=2mm=2\times {{10}^{-3}}m$

Total extension of joined wire, $\Delta {{L} _{net}}=0.9\,mm=9\times {{10}^{-4}}\,m$

Both wires join in series, so tension in both is equal

$T=\dfrac{{{Y} _{1}}A\Delta {{L} _{1}}}{L}=\dfrac{{{Y} _{2}}A\Delta {{L} _{2}}}{L}$  

Net extension in joined wire.

$\Rightarrow \Delta {{L} _{net}}=\Delta {{L} _{1}}+\Delta {{L} _{2}}=\dfrac{TL}{{{Y} _{1}}A}+\dfrac{TL}{{{Y} _{2}}A}=\dfrac{TL}{A}\left( \dfrac{1}{{{Y} _{1}}}+\dfrac{1}{{{Y} _{2}}} \right)$

$\Rightarrow \Delta {{L} _{net}}=\dfrac{TL}{A}\left( \dfrac{1}{{{Y} _{1}}}+\dfrac{1}{{{Y} _{2}}} \right)$

$\Rightarrow T=\dfrac{A\Delta {{L} _{net}}}{L\left( \dfrac{1}{{{Y} _{1}}}+\dfrac{1}{{{Y} _{2}}} \right)}=\dfrac{\dfrac{\pi }{4}{{\left( 2\times {{10}^{-3}} \right)}^{2}}\times 9\times {{10}^{-4}}}{2\left( \dfrac{1}{2\times {{10}^{11}}}+\dfrac{1}{6\times {{10}^{11}}} \right)}=212.05\ N$

Total force produced in joined wire is $212\ N$ 

Four identical hollow cylindrical columns of steel support a big structure of mass $50,000kg$. The inner and outer radii of each column are $30\ cm$ and $60\ cm$ respectively, Assuming the load distribution to be uniform. Calculate the compressional strain of each column,

  1. $7.2\times 10^{-7}$

  2. $3.78\times 10^{-6}$

  3. $2.78\times 10^{-4}$

  4. $3.78\times 10^{-4}$


Correct Option: A

To break a wire of 1 m length, minimum 40 kg weight is required. Then the wire of the same material of double radius and 6 m length will require breaking weight 

  1. 80 kg weight

  2. 240 kg weight

  3. 200 kg weight

  4. 160 kg weight


Correct Option: B

two wires of different material, each $2m$ long and of diameter $2mm$ are joined in series to form a composite wire.What force will produce a total extension of $0.9mm$ $\left( { Y } _{ 1 }=2\times { 10 }^{ 11 }N/{ m }^{ 2 },{ Y } _{ 2 }=7\times { 10 }^{ 11 }N/{ m }^{ 2 } \right) $

  1. $22 N$

  2. $220 N$

  3. $120 N$

  4. 159 N$


Correct Option: B

Which of the following shows greater increment in length when subjected to same load to wires made of same material:

  1. $L = 1 m$ and $r = 1 mm$

  2. $L = 1 m$ and $r = 2 mm$

  3. $L = 2 m$ and $r = 1 mm$

  4. $L = 2 m$ and $r = 2 mm$


Correct Option: A

A composite wire consists of a steel Wire of length 1 5 and a co uniform cross-sectional area of ${ 2.5\times  }10^{ -5 }{ m }^{ -5 }$.It is loaded with a mass of 200kg. Find the extension produced. Young's modulus of copper is ${ 2.5\times }10^{ 11 }{ Nm }^{ -2 }$ and that of steel ${ 2.0\times  }10^{ 11 }{ Nm }^{ -2 }$

  1. 4.156 mm.

  2. 2.156 mm.

  3. 2.256 mm.

  4. 3.156 mm.


Correct Option: B

A uniform rod of length L , area of cross-section A , mass m and Young 's modulus Y is pulled on  horizontal surface by a force f , such that the friction acting on it is F/2 . What if the elongation in the rod? 

  1. $\frac { FL }{ 2AY } $

  2. $\frac { FL }{ AY }$

  3. $\frac { 3FL }{ 2AY }$

  4. $\frac { 3FL }{ 4AY }$


Correct Option: A

A load of 2 kg produces an extension of 1 mm in a wire of 3 m in length and 1 mm In diameter. The Young's modulus of wire will be 

  1. $3.25 \times 10 ^ { 10 } \mathrm { Nm } ^ { - 2 }$

  2. $7.48 \times 10 ^ { 12 } \mathrm { Nm } ^ { 2 }$

  3. $7.48 \times 10 ^ { 10 } \mathrm { Nm } ^ { - 2 }$

  4. $7.48 \times 10 ^ { - 10 } \mathrm { Nm } ^ { - 2 }$


Correct Option: C
Explanation:
The applied load $=F = mg = 2 \times 9.8 = 19.6 N$
diameter $= 1 mm =1 \times {10^{ - 3}} m$
=> radius$ = 0.5 \times {10^{ - 7}} m$
Area , $A  = 3.14{r^2} = 3.14 \times 0.25 \times {10^{ - 6}}$
$=0.785 \times {10^{ - 6}}$
We know that$,$
$stress = Force/area$
$= 19.6/0.785 \times {10^{ - 6}}$
$24.96\times { 10^{ -6 } }$
change in length$, ΔL = 1 mm = {10^{ - 3}} m$
Length$, L  = 3 m$
$hence strain = ΔL/L $
$={10^{ - 3}}/3 $
we know that young's modulus is given by the ratio of stress and strain$,$
Hence$,$
$E  = 24.96 \times {10^{ - 6}}/{10^{ - 3}}/3$
$= 74.8 \times {10^9}$
$= 7.48 \times {10^{10}}N{m^{ - 2}}$
Hence, 
option $(C)$ is correct answer.

A wire is suspended by one end. At the other end, a weight equivalent to 20 N force is applied. If the increase in length is I mm, then increase in the f the wire will be

  1. 0.01 J

  2. $0.02 \mathrm { J }$

  3. $0.04 J$

  4. $1.00 \mathrm { J }$


Correct Option: A
Explanation:

$P.E = \frac{1}{2} \times 20 \times 0.001 = 0.01J$

Two wires of same length and same radius one of copper and another of steel are welded to form a long wire. An extension of $3cm$ is produced in it on applying a load at one of its ends. If the Young's modulus of steel is twice that of copper, then the extension in the steel wire will be

  1. 1 cm

  2. 2 cm

  3. 1.5 cm

  4. 2.5 cm


Correct Option: A
Explanation:

Let the length of copper wire and steel wires be L
Total extension in the joined wire of length 2L= 3cm
Let extension in copper wire be ${ l } _{ 1 }$ and extension in steel wire be ${ l } _{ 2 }$.
Let Young's Modulus of copper wire be Y. So, the Young's Modulus of steel wire is 2Y.(Given)
Since, Stress applied on the long wire is same we can write that,

$\dfrac { { l } _{ 1 } }{ L } \times Y=\dfrac { { l } _{ 2 } }{ L } \times 2Y$
Hence, we get
${ l } _{ 1 }={ 2l } _{ 2 }$                              .....(1)
We also know,
${ l } _{ 1 }{ +l } _{ 2 }=3 cm$                               .....(2)
Solving (1) and (2),
we get
${ l } _{ 2 }=1 cm$