Tag: work and power

Questions Related to work and power

A refrigerator transfer 180 joule of energy in one second from temperature $ { -3 }^{ 0 }C$ to $ { 27 }^{ 0 }C.$ Calculate the average power consumed, assuming no energy losses in the process. 

  1. 18 W

  2. 54 W

  3. 20 W

  4. 120 W


Correct Option: A

A man pulls a lawn roller with a force of $20\ kgf$. He applies the force at an angle $60^{\circ}$ with the ground through $10\ m$. If he takes $1$ minutes in doing so, calculate the power developed.

  1. $25\ J$

  2. $16.67\ J$

  3. $34\ J$

  4. $58\ J$


Correct Option: B

If the average power radiated by the star is $10 ^ { 16 } \mathrm { W }$ , the deuteron supply of the star is exhausted in a time of the order of 

  1. $10 ^ { 6 }$ seccond

  2. $10 ^ { 14 }$ second

  3. $10 ^ { 12 }$ second

  4. $10 ^ { 16 }$ second


Correct Option: C

A boat moving with constant speed v in still waters experiences a total frictional force F. The power developed by the boat is

  1. $\frac{1}{2}Fv$

  2. $Fv$

  3. $\frac{1}{2}Fv^2$

  4. $Fv^2$


Correct Option: B

A body of mass m is projected at an angle $\displaystyle \theta $ with the horizontal with an initial velocity $\displaystyle v _{0}.$ The average power of gravitational force over the whole time of flight is

  1. $\displaystyle mg\cos \theta $

  2. $\displaystyle \frac{1}{2}mg\sqrt{u\cos \theta }$

  3. $\displaystyle \frac{1}{2}mgu\sin \theta $

  4. zero


Correct Option: D
Explanation:

The projected body again comes back down. Hence the net displacement in the vertical direction will be 0.
$\therefore W=mgh=mg\times 0=0$

A time varying power $P=2t$ is applied on a particle of mass $m$. Find average power over a time interval from t=0 to t=t :

  1. $\displaystyle P _{av}= t$

  2. $\displaystyle P _{av}= 2t$

  3. $\displaystyle P _{av}= 4t$

  4. $\displaystyle P _{av}= 8t$


Correct Option: A
Explanation:
Average power over a time interval $t=0$ to $t=t$ is 
$\dfrac{\int _0^tPdt}{\int _0^tdt}$
$=\dfrac{\int _0^t 2tdt}{t}$
$=\dfrac{t^2}{t}=t$

A car of mass 1000 kg accelerates from rest to $100 : km : h^{-1}$ in 5 seconds. What is the average power of the car ?

  1. $7.71\times 10^5 W$

  2. $7.71\times 10^4 W$

  3. $15.42\times 10^4 W$

  4. $15.42\times 10^5 W$


Correct Option: B
Explanation:


Mass of the car m$=1000\ kg$
Initial velocity of car ${v} _{1}=0$
Final velocity of car ${v} _{2}$$=100km/h=100\times\dfrac{5}{18}m/s=27.78m/s$
Average power of car$=$change in kinetic energy per unit time$=\dfrac{\dfrac{1}{2}m{{v} _{2}}^{2}-\dfrac{1}{2}m{{v} _{1}}^{2}}{t}$,since ${v} _{1}=0$
So,average power of car$=\dfrac{\dfrac{1}{2}m{{v} _{2}}^{2}}{t}$
                                 $=\dfrac{\dfrac{1}{2}\times1000\times{27.78}^{2}}{5}$
                                 $=7.71\times{10}^{4}W$
                                

A particle of mass $m$ is lying on smooth horizontal table. A constant force $F$ tangential to the surface is applied on it. Find average power over a time interval from $t=0$ to $t=t$.

  1. $\displaystyle \frac{F^{2}t}{3m}$

  2. $\displaystyle \frac{F^{2}t}{2m}$

  3. $\displaystyle \frac{2F^{2}t}{3m}$

  4. $\displaystyle \frac{3F^{2}t}{2m}$


Correct Option: B
Explanation:

Average power of a time interval $t=0$ to $t=t$


is $\dfrac{\int^t _0 Fvdt}{ _0^t\int dt}$


$=\dfrac{F\int _0^t vdt}{t}$

$=\dfrac{F\int _0^t \dfrac{F}{m}tdt}{t}$

$=\dfrac{F^2t}{2m}$

A block of mass $1$ $kg$ starts moving with constant acceleration $\displaystyle a= 4m/s^{2}.$. Find the average power of the net force in a time interval from $t=0$ to $t=2s$.

  1. $16 W$

  2. $1.6 W$

  3. $15 W$

  4. $1.5 W$


Correct Option: A
Explanation:
Velocity of an object after time $t$ is given by $v=at$
Average power from time $t _1$ to $t _2$

$=\dfrac{\int _{t _1}^{t _2}Fvdt}{\int _{t _1}^{t _2}dt}$

$=\dfrac{\int _0^t(ma)(at)dt}{\int _0^tdt}$

$=ma^2\dfrac{t}{2}$

$=1\times 4^2\times\dfrac{2}{2}W$

$=16W$

A given $1700 kg$ car goes from $18 {m}/{s}$ to $0 {m}/{s}$. If this transition took $9 sec$, what was the average power supplied by the force causing this deceleration?
Take the car system to be otherwise isolated (i.e. the decelerating force was the only force acting on the car).

  1. $-1700 W$

  2. $-15300 W$

  3. $-30600 W$

  4. $-61200 W$

  5. Cannot be determined from the information given


Correct Option: C
Explanation:

Given :   $u =18$ m/s             $u = 0$ m/s                $m = 1700$ kg             $t = 9$ s

Using   $v = u+at$
$\therefore$  $0 = 18 + a \times 9$                 $\implies a = -2$  $m/s^2$
Using       $v^2  - u^2 = 2aS$
$\therefore$  $0 - (18)^2  =2(-2) S$                      $\implies S = 81$  m

Thus work done by decelerating force        $W  = -ma S $
$\therefore$  Power supplied     $P =\dfrac{-maS}{t}  = \dfrac{- 1700 \times 2 \times 81}{9}  =-30600$  W