Tag: conic sections

Questions Related to conic sections

lf $ax^{2}+by^{2}+2gx+2fy+c=0$ represents an ellipse, then

  1. its major axis is parallel to $x-$axis

  2. its major axis is parallel to $y-$axis

  3. its axes (i.e. major axis and minor axis) are neither parallel to $x-$axis nor parallel to $y-$axis

  4. its axes are parallel to co-ordinate axes


Correct Option: D

The abscissa of the focii of the ellipse $25(\mathrm{x}^{2}-6\mathrm{x}+9)+16\mathrm{y}^{2}=400$ is:

  1. $ (4,-ae), (4,ae)$

  2. $ (3,-ae), (3,ae)$

  3. $ (5,-ae), (5,ae)$

  4. None of these


Correct Option: B
Explanation:

The equation of the ellipse can be written as $\dfrac{(x-3)^{2}}{4^{2}}+\dfrac{y^{2}}{5^{2}}=1$
$\therefore $ Minor axis is along the line $x-3=0$ and major axis is $y=0$ 
$(\because a^{2}=4^{2}< b^{2}=5^{2})$
$\therefore S\,$ and $ S^{'}$ are $(3,3),(3,-3)$
$\because 4^{2}=5^{2}(1-e^{2})\Rightarrow e=\dfrac{3}{5}\left ( \because ae=5\dfrac{3}{5}=3 \right )$ and $S\equiv(3,ae )$, $S^{'}\equiv(3,-ae).$
Ans: B

The eccentricity of the curve with equation ${ x }^{ 2 }+{ y }^{ 2 }-2x+3y+2=0$ is

  1. $0$

  2. $\sqrt { 2 }$

  3. $1/2$

  4. ${ 1 }/{ \sqrt { 2 } }$


Correct Option: A
Explanation:

Given ${x}^{2}+{y}^{2}-2x+3y+2=0$

$\Rightarrow \left({x}^{2}-2x\right)+\left({y}^{2}+3y\right)+2=0$
$\Rightarrow \left({x}^{2}-2x+1-1\right)+\left({y}^{2}+2\times 1\times \dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)+2=0$
$\Rightarrow {\left(x-1\right)}^{2}-1+{\left(y+\dfrac{3}{2}\right)}^{2}-\dfrac{9}{4}+2=0$
$\Rightarrow {\left(x-1\right)}^{2}+{\left(y+\dfrac{3}{2}\right)}^{2}=-2+1+\dfrac{9}{4}=\dfrac{5}{4}$
Divide both sides by ${\left(\sqrt{\dfrac{5}{4}}\right)}^{2}$ we get
$\dfrac{{\left(x-1\right)}^{2}}{{\left(\sqrt{\dfrac{5}{4}}\right)}^{2}}+\dfrac{{\left(y+\dfrac{3}{2}\right)}^{2}}{{\left(\sqrt{\dfrac{5}{4}}\right)}^{2}}$  is an ellipse where $a=\sqrt{\dfrac{5}{4}}$ and  $b=\sqrt{\dfrac{5}{4}}$
Eccentricity $e=\sqrt{1-\dfrac{{b}^{2}}{{a}^{2}}}=\sqrt{1-\dfrac{{\left(\sqrt{\dfrac{5}{4}}\right)}^{2}}{{\left(\sqrt{\dfrac{5}{4}}\right)}^{2}}}=\sqrt{1-1}=0$