Tag: finite and infinite sets
Questions Related to finite and infinite sets
Which of the following is incorrect.
Define infinite set .
Is ${x:x\in R:1\le x\le 3}$ a infinite set?
Choose that set of numbers from the option set that is similar to the given set {10,15,65}
Let S be the set of all values of x such that $log _{2x}(x^{2}+5x+6)<1$ then the sum of all integral value of x in the set S, is
If a set contains $n$ elements then number of elements in its power set is
If $A,B$ are two non-empty sets which of the following statement is false
If $A=\left{1, 2, 3\right}$, then the numbers of subsets of set $A$ containing element $3$, is
Let ${ a } _{ 1 },{ a } _{ 2 },{ a } _{ 3 },............{ a } _{ 10 }$ be in G.P. with ${ a } _{ i }>0$ for $i=1,2,....,10$ and $S$ be the set of pairs $(r,k),r\quad k\in N$ ( the set of natural numbers) for which
$\left| { log } _{ e }{ a } _{ 1 }^{ r }{ a } _{ 2 }^{ k }\quad { log } _{ e }{ a } _{ 2 }^{ r }{ a } _{ 3 }^{ k }\quad { log } _{ e }{ a } _{ 3 }^{ r }{ a } _{ 4 }^{ k }\ { log } _{ e }{ a } _{ 4 }^{ r }{ a } _{ 5 }^{ k }\quad { log } _{ e }{ a } _{ 5 }^{ r }{ a } _{ 6 }^{ k }\quad { log } _{ e }{ a } _{ 6 }^{ r }{ a } _{ 7 }^{ k }\ { log } _{ e }{ a } _{ 7 }^{ r }a _{ 8 }^{ k }\quad { log } _{ e }{ a } _{ 8 }^{ r }{ a } _{ 9 }^{ k }\quad { log } _{ e }{ a } _{ 9 }^{ r }{ a } _{ 10 }^{ k } \right| =0$
Then the number of elements in S, is :
Classify $A = {x | x$ is a multiple of $3}$ as 'finite' or 'infinite'.
Classify $D = {x | x = 2^n, n \in N}$ as 'finite' or 'infinite'.
- ← Previous
- 1
- 2
- 3
- 4
- Next →