Tag: banks and simple interest

Questions Related to banks and simple interest

The population of a village was $20,000$ and after $2$ years it become $22050$. What is the rate of increase per annum ?

  1. $10\%$

  2. $8\%$

  3. $5\%$

  4. $6\%$


Correct Option: C
Explanation:

We know that

Final population $=$ (original population)$\times { \left( 1+\frac { Rate }{ 100 }  \right)  }^{ time }.$.........(i)
Here original population $=20000$,
final population $=22050$,
Time $=2$ yrs,
rate=?
Let the rate $=R$.
Substituting the values of the given parameters in (i),
$20000{ \left( 1+\dfrac { R }{ 100 }  \right)  }^{ 2 }=22050$
$ \Rightarrow { \left( 1+\dfrac { R }{ 100 }  \right)  }^{ 2 }=\dfrac { 22050 }{ 20000 } =1.1025$
$ \Rightarrow \left( 1+\dfrac { R }{ 100 }  \right) =\sqrt { 1.1025 } =1.05\  $
i.e $R=5\%$
Ans- Option C.

At what rate per cent per annum will Rs.3000 amount to Rs.3993 in 3 years, if the interest is compounded annually ?

  1. 9 % p.a.

  2. 10 % p.a.

  3. 12 % p.a.

  4. 15 % p.a.


Correct Option: B
Explanation:

 A = Rs.3993, P = Rs.3000, n = 3, r = ?
$\displaystyle \therefore A=P\left ( 1+\frac{r}{100} \right )\Rightarrow 3993=3000\left ( 1+\frac{r}{100} \right )^{3}\Rightarrow \frac{3993}{3000}=\left ( 1+\frac{r}{100} \right )^{3}\Rightarrow \frac{1331}{1000}=\left ( 1+\frac{r}{100} \right )^{3}$
$\displaystyle \Rightarrow \left ( \frac{11}{10} \right )^{3}=\left ( 1+\frac{r}{100} \right )^{3}\Rightarrow 1+\frac{r}{100}=\frac{11}{10}\Rightarrow \frac{r}{100}=\frac{11}{10}-1=\frac{1}{10}$
$\displaystyle \therefore r=\frac{100}{10}=10\%: : p.a.$

Rs. 8000 invested at compound interest gives Rs.1261 as interest after 3 years. The rate of interest per annum is

  1. 25 %

  2. 17.5 %

  3. 10 %

  4. 5 %


Correct Option: D
Explanation:

P = Rs.8000 C.I. = Rs. 1261

$\displaystyle \Rightarrow Amount=Rs.9261, n=3, r=?$
$\displaystyle \therefore 9261=8000\left ( 1+\cfrac{r}{100} \right )^{3}$
$\Rightarrow \left ( 1+\cfrac{r}{100} \right )^{3}=\cfrac{9261}{8000}=\left ( \cfrac{21}{20} \right )^{3}$
$\displaystyle \Rightarrow 1+\cfrac{r}{100}=\cfrac{21}{20}$
$\Rightarrow \cfrac{r}{100}=\cfrac{21}{20}-1=\cfrac{1}{20}$
$\Rightarrow r\cfrac{100}{20}\%=5\%p.a.$

The difference between compound interest and simple interest at the same rate on Rs.5000 for 2 years is Rs.72 What is the rate of interest per annum ?

  1. 20

  2. 15

  3. 12

  4. 10


Correct Option: C
Explanation:
Let the rate per cent p.a.be r. Then,
$\displaystyle S.I.=Rs.\left ( 5000\times \cfrac{r}{100}\times 2 \right )=Rs.100r$
$\displaystyle C.I.=Rs.\left [ 5000\left ( 1+\cfrac{r}{100} \right )^{2}-5000 \right ]$
$=Rs.5000\left [ \left ( 1+\cfrac{r}{100} \right )^{2}-1 \right ]$
$=Rs.5000\left [ \left ( 1+\cfrac{r^{2}}{10000}+\cfrac{2r}{100} \right )-1 \right ]$
$\displaystyle =Rs.5000\left ( \cfrac{r^{2}}{10000}+\cfrac{r}{50} \right )=Rs.\cfrac{5000(r^{2}+200r)}{10000}$
$=Rs.\left ( \cfrac{r^{2}}{2}+100r \right )$
$\displaystyle \therefore C.I.-S.I.=72$
$\displaystyle \Rightarrow \cfrac{r^{2}}{2}+100r-100r=72$
$\Rightarrow \cfrac{r^{2}}{2}=72$ 
$\Rightarrow r^{2}=144$
$\Rightarrow r=12\%\: \: p.a.$

A sum of money amounts to Rs.4840 in 2 years and Rs.5324 in 3 years at compound interest compounded annually. What is the rate of interest per annum ?

  1. 8

  2. 10

  3. 12

  4. 15


Correct Option: B
Explanation:

 Let the principal be Rs.P and rate of interest p.a. = r% Then
$\displaystyle P\left ( 1+\frac{r}{100} \right )^{2}=4840...........(i)$ and $\displaystyle P\left ( 1+\frac{r}{100} \right )^{3}=5324...........(ii)$
$\displaystyle \Rightarrow \frac{5324}{4840}=\frac{(1+r/100)^{3}}{(1+r/100)^{2}}\Rightarrow 1+\frac{r}{100}=\frac{1331}{1210}$
$\displaystyle \Rightarrow \frac{r}{100}=\frac{1331}{1210}-1=\frac{121}{1210}=\frac{1}{10}\Rightarrow r=\frac{1}{10}\times 100=10\%: p.a.$

A certain sum of money amounts to $\displaystyle \frac {5}{4}$ of itself in 5 years. The rate percent per annum is

  1. 5%

  2. 7%

  3. 9%

  4. 12%


Correct Option: A
Explanation:

R $\times$ T = 100 $\times$ (N - 1)
$R \times 5 = 100 \times \left ( \displaystyle \frac {5}{4} - 1 \right )$
$R \times 5 = 100 \times \displaystyle \frac {1}{4}$
$R = 5\%$

Madhav lent out Rs. 7953 for 2 years and Rs. 1800 for 3 years at the same rate of simple interest. If he got Rs. 2343. 66 as total, then find the percent rate of interest.

  1. 11%

  2. 12%

  3. 12.5%

  4. 5%


Correct Option: A
Explanation:

We know that Simple Interest $ = \cfrac {PNR}{100} $
Given,  $ \cfrac {7953 \times 2 \times R}{100}  + \cfrac {1800  \times 3 \times R}{100}  = Rs 2343.66 $
$=> 159.06R + 54R = Rs 2343.66 $
$ => 213.06R = 2343.66 $
$ => R = 11 \%$ 

Madhav lent out Rs $7953$ for $2$ years and Rs $1800$ for $3$ years at the same rate of simple interest. If he hot Rs $2343.66$ as total interest then find the percent rate of interest.

  1. $11\%$

  2. $12\%$

  3. $12.5\%$

  4. $5\%$


Correct Option: A
Explanation:

$S.I = \dfrac{P\times t\times r}{100}$


Let the rate be $r$ Principal $P$ and time $t$

${S.I} _{1}=\dfrac{7953\times 2\times r}{100}$


${S.I} _{2}=\dfrac{1800\times 3\times r}{100}$
$Total$ $simple$ $interest = {S.I} _{1}+{S.I} _{2} $

$2343.66=\dfrac { 7953\times2\times r }{ 100 } +\dfrac { 1800\times3\times r }{ 100 }$ 
$2343.66 = 213.06\times r$
$r = 11\%$

If the interest is payable quarterly, Rs. $1600$ amounts to Rs. $2662$ after $1\dfrac{1}{2}$ years, the annual rate of interest is

  1. $5\%$

  2. $10\%$

  3. $20\%$

  4. $35\%$


Correct Option: D
Explanation:

Amount $= Rs. 2662$
Principal $= Rs. 1600$
Time $= 1.5$ years $= 6$ quarters
$A = P\left(1 + \cfrac{R}{100}\right)^T$
$2662 = 1600 \left(1 + \cfrac{R}{100}\right)^6$
$1.088 = 1 + \cfrac{R}{100}$
$R = 8.8\%$
Hence, annual rate of interest $=8.8\times 4 = 35\%$

Find the rate, when 1,800 earns an interest of Rs 432 in 3 years

  1. 7%

  2. 6%

  3. 5%

  4. 8%


Correct Option: D
Explanation:

Given $P=1, 800, SI=432, T=3 years$
$R=\dfrac {SI\times 100}{P\times T}=\dfrac {432\times 100}{1800\times 3}=8$%