Tag: introduction to hyperbola
Questions Related to introduction to hyperbola
Find the locus of the point of intersection of the lines $\sqrt{3}x-y-4\sqrt{3} \lambda=0$ and $\sqrt{3}\lambda x+\lambda y-4\sqrt{3}=0$ for different values of $\lambda$.
-
$4x^2-y^2=48$
-
$x^2-4y^2=48$
-
$3x^2-y^2=48$
-
$y^2-3x^2=48$
Let $(h,k)$ be the point of intersection of the given lines. Then,
The AFC Curve passes through the Origin statement is -
-
True
-
False
-
Partially True
-
Nothing can be said
AFC curve is downward sloping because fixed costs are distributed over large volume when quantity produced increases.
$Center\quad of\quad the\quad hyperbola\quad { x }^{ 2 }+4{ y }^{ 2 }+6xy+8x-2y+7=0\quad is\quad $
-
$(1,1)$
-
$(0,2)$
-
$(2,0)$
-
$None\quad of\quad these$
Circles are drawn on chords of the rectangular hyperbola $xy=4$ parallel to the line $y=x$ as diameters.All such circles pass through two fixed points whose coordinates are
-
$\left(2,2\right)$
-
$\left(2,-2\right)$
-
$\left(-2,2\right)$
-
$\left(-2,-2\right)$
Centre of the hyperbola ${x^2} + 4{y^2} + 6xy + 8x - 2y + 7 = 0$ is
-
$(1,1)$
-
$(0,2)$
-
$(2,0)$
-
None of these
Consider equation of a hyperbola as $F=ax^2+2by+cy^2+2dx+2ey+f=0$
The eccentricity of the hyperbola whose latus-return is $8$ and length of the conjugate axis is equal to half the distance between the foci, is
-
$\dfrac43$
-
$\dfrac4{\surd 3}$
-
$\dfrac2{\surd 3}$
-
$None\ of\ these$
Given that the length of the latus rectum is $8$ and length of the conjugate axis is equal to half the distance between the foci.
From any point on the hyperbola $\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ tangents are drawn to the hyperbola $\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 2$. The area cut-off by the chord of contact on the asymptotes is equal to
-
$\displaystyle \frac{ab}{2}$
-
ab
-
2 ab
-
4 ab
Let $P\left( { x } _{ 1 },{ y } _{ 1 } \right) $ be a point on the hyperbola $\cfrac { { x }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { y }^{ 2 }
}{ { b }^{ 2 } } =1$. Then,
$\cfrac { { { x } _{ 1 } }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { { y } _{ 1 } }^{ 2 } }{ { b }^{ 2 } } =1$
The chord of contact of tangents from $P$ to the hyperbola $\cfrac { { x
}^{ 2 } }{ { a }^{ 2 } } -\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =2$ is
$\cfrac
{ { x }{ x } _{ 1 } }{ { a }^{ 2 } } -\cfrac { { y }{ y } _{ 1 } }{ { b
}^{ 2 } } =2\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (i)$
$\cfrac { x }{ a } -\cfrac { y }{ b } =0$ and $\cfrac { x }{ a } +\cfrac { y }{ b } =0$
${
x } _{ 1 }=\cfrac { 2a }{ \cfrac { { x } _{ 1 } }{ a } -\cfrac { { \quad y
} _{ 1 } }{ b } } \quad ,{ \quad y } _{ 1 }=\cfrac { 2b }{ \cfrac { { x
} _{ 1 } }{ a } -\cfrac { { \quad y } _{ 1 } }{ b } } $
${ x } _{ 2
}=\cfrac { 2a }{ \cfrac { { x } _{ 1 } }{ a } -\cfrac { { \quad y } _{ 1 }
}{ b } } \quad ,{ \quad y } _{ 2 }=\cfrac {- 2b }{ \cfrac { { x } _{ 1 }
}{ a } -\cfrac { { \quad y } _{ 1 } }{ b } } $
$\quad \therefore $ Area of the triangle
$\cfrac
{ 1 }{ 2 } \left( { x } _{ 1 }{ y } _{ 2 }-{ x } _{ 2 }{ y } _{ 1 } \right)
=\cfrac { 1 }{ 2 } \left( \cfrac { 4ab\times 2 }{ \cfrac { { { x } _{ 1 }
}^{ 2 } }{ { a }^{ 2 } } +\cfrac { { { y } _{ 1 } }^{ 2 } }{ { b }^{ 2 }
} } \right) =4ab$
Let $a, b$ be non-zero real numbers. The equation $\displaystyle \left ( ax^{2}+by^{2}+c \right )\left ( x^{2}-5xy+6y^{2} \right )$ represents
-
four straight lines, when $\displaystyle c=0$ and $a, b$ are of the same sign
-
two straight lines and a circle, when $\displaystyle a=b$ and $c$ is of sign opposite to that of $a$
-
two straight lines and a hyperbola, when $a$ and $b$ are of the same sign and $c$ is of sign opposite to that of $a$
-
a circle and an ellipse, when $a$ and $b$ are of the same sign
From given expression, $\displaystyle { x }^{ 2 }-5xy+6{ y }^{ 2 }=0$ are pair of straight lines $\displaystyle y=\frac { x }{ 2 } $ and $ y=\dfrac { x }{ 3 } $
Now, $\displaystyle a{ x }^{ 2 }+b{ y }^{ 2 }+c=0$ will be cirlce of radius $\displaystyle \sqrt { -\frac { c }{ a } } $.
If a hyperbola passes through the foci of the ellipse $\displaystyle \frac {x^2}{25} + \frac {y^2}{16} = 1$ and its traverse and conjugate axis coincide with major and minor axes of the ellipse, and product of the eccentricities is 1, then:
-
Equations of the hyperbola is $\displaystyle \frac {x^2}{9} - \frac {y^2}{16} = 1$
-
Equations of the hyperbola is $\displaystyle \frac {x^2}{9} - \frac {y^2}{25} = 1$
-
Focus of the hyperbola is $\displaystyle (5, 0)$
-
Focus of the hyperbola is $\displaystyle (5 \sqrt 3, 0)$
Given ellipse is, $\displaystyle \frac {x^2}{25} + \frac {y^2}{16} = 1$
Eccentricity of the ellipse is, $\displaystyle e _e =\sqrt{1-\frac{b^2}{a^2}}=\frac{3}{5}$
So the foci of the ellipse is, $(\pm ae _e,0)=(\pm 3 , 0)$
Let eccentricity of the required hyperbola is $e _h$ and semi major and minor axes are $a$ and $b$, so the equation of hyperbola is, $\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$
Given hyperbola passes trough $(\pm 3,0)\Rightarrow \displaystyle \frac{9}{a^2}-\frac{0}{b^2}=1\Rightarrow a^2 = 9$
Also given that $\displaystyle e _e\times e _h = 1$ $\Rightarrow e _h=\cfrac{5}{3}$ $\Rightarrow$ $b^2 =a^2(e _h^2-1)=16 $
Hence required hyperbola is, $\displaystyle \frac{x^2}{9}-\frac{y^2}{16}=1$
And foci of the hyperbola is, $(\pm 5,0)$
The equation ${x}^{2}+9=2{y}^{2}$ is an example of which of the following curves?
-
hyperbola
-
circle
-
ellipse
-
parabola
-
line
Given, ${x}^{2}+9=2{y}^{2}$
$\Rightarrow \dfrac { { y }^{ 2 } }{ 9/2 } -\dfrac { { x }^{ 2 } }{ 9 } =1$
It is in the form of $\dfrac { { y }^{ 2 } }{ { a }^{ 2 } } -\dfrac { { x }^{ 2 } }{ { b }^{ 2 } } =1$ which is the equation of hyperbola.
Therefore, the given equation is a equation of hyperbola.