Tag: point of intersection of a line and a plane
Questions Related to point of intersection of a line and a plane
A straight line $\overrightarrow { r } =\overrightarrow { a } +\lambda \overrightarrow { b } $ meets the plane $\overrightarrow { r } .\overrightarrow { n } =0$ in $P$. The position vector of $P$ is
The value of $k$ such that $\displaystyle \dfrac{{x}-4}{1}=\dfrac{{y}-2}{1}=\dfrac{{z}-{k}}{2}$ lies in the plane $2x-4y+{z}=7$ is
The plane $x-2y+z-6=0$ and the line $\displaystyle\frac{x}{1}=\displaystyle\frac{y}{2}=\displaystyle\frac{z}{3}$ are related as.
The plane ax + by + cz = 1 meets the coordinate axes in A, B and C. The centroid of $\triangle ABC$ is
The plane $\frac{x}{y}+\frac{y}{3}+\frac{z}{4}$ =1 cutes the axes in A,B,C, then the are of the $\Delta ABC$ is;
Perpendicular is drawn from the point $(0,3,4)$ to the plane $2x -2y + z + (-10) = 0$, then co-ordinates of the foot of the L's are
Let the line $\displaystyle \frac{x-2}{3}= \frac{y-1}{-5}= \frac{z+2}{2}$ lie in the plane $x+3y-\alpha z+\beta = 0$. Then $\left ( \alpha ,\beta \right )$ equals :
The line $x -2y + 4z + 4 = 0$, $x + y + z - 8 = 0$ intersects the plane $x - y + 2z + 1 = 0$ at the point
$L: \displaystyle \frac{x\, +\, 1}{2}= \frac{y\, +\, 1}{3}= \frac{z\, +\, 1}{4}$
$\pi _{1}:\, x\, +\, 2y\, +\, 3z= 14,\, \pi _{2}:\, 2x\, -\, y\, +\, 3z= 27$
A line with positive direction cosines passes through the point $\displaystyle P\left ( 2,-1,2 \right )$ and makes equal angles with the coordinates axis. The line meet the plane $\displaystyle 2x+y+z=9$ at ponit $Q$.
The length of the line segment $PQ$ equals.