Tag: logical equivalence

Questions Related to logical equivalence

Which of the following proposition is a contradiction?

  1. $(\sim p\vee \sim q)\vee (p\vee \sim q)$

  2. $(p\rightarrow q)\vee (p\wedge \sim q)$

  3. $(\sim p\wedge q)\wedge (\sim q)$

  4. $(\sim p\wedge q)\vee (\sim q)$


Correct Option: C
Explanation:

Contradiction is a preposition which is always false(F).
Here $\sim \equiv negation$ and $\wedge \equiv AND$
Let $ x=(\sim p \wedge q) \wedge (\sim q)$
If $p=F$ and $q=F$ then $x=F$
If $p=F$ and $q=T$ then $x=F$
If $p=T$ and $q=F$ then $x=F$
If $p=T$ and $q=T$ then $x=F$
Hence option (c) is correct

Which of the following is not true (where $p, q$ and $r$ take truth values and $t$ is a tautology, $c$ is a contradiction)

  1. $p\wedge p\equiv p$

  2. $p\vee t=t$

  3. $p\wedge c= p$

  4. $p\vee (q\wedge r)=(p\vee q)\vee (p\vee r)$


Correct Option: A

$p,q,r$ are $3$ statement such that $(p\rightarrow q)\wedge (q\rightarrow r)\Rightarrow (p\rightarrow r)$ is 

  1. Tautology

  2. Contradiction

  3. $P\wedge q$

  4. $p\wedge (\sim q)$


Correct Option: A

The statement $[p \wedge (p \rightarrow q)]\rightarrow q$,is :

  1. a fallacy

  2. a tautology

  3. neither a fallacy nor a tautology

  4. not a compound statement


Correct Option: B
Explanation:

The statement

$[p \wedge (p \rightarrow q)] \rightarrow q$
a tautology 

$p,q,r$ are $3$ statement such that $(p \rightarrow q)\wedge (q \rightarrow r)\Rightarrow (P \rightarrow r)$ is

  1. Tautology

  2. Contradiction

  3. $P \wedge q$

  4. $p \wedge (\sim q)$


Correct Option: A

Which of the following is a tautology?

  1. $p\wedge (\sim p)$

  2. $p\wedge c$

  3. $p\vee t$

  4. $p\wedge p$


Correct Option: A

The proposition $p\vee (\sim p\vee q)$ is a 

  1. a tatutology

  2. a contradiction

  3. Logically equivalent to $p$ & $q$

  4. both $1$ & $2$


Correct Option: A

The only statement among the followings that is a tautology is

  1. $A\vee(A\wedge B)$

  2. $[A\wedge (A\rightarrow B)]\rightarrow B$

  3. $B\rightarrow [A\wedge (A\rightarrow B)]$

  4. $A\wedge (A\vee B)$


Correct Option: A

The simplifed form of $(p \vee q)\vee (\sim p \wedge q)$ is

  1. $T$

  2. $p \wedge q$

  3. $F$

  4. $p \vee q$


Correct Option: A

$p,q,r$ are $3$ statements such that $\left(p\rightarrow q\right)\wedge \left(q\rightarrow r\right)=Rightarrow \left(p\rightarrow r\right)$ is

  1. $Tautology$

  2. $Contradiction$

  3. $P\wedge q$

  4. $p\wede(\sim q)$


Correct Option: A