Tag: problems on percentage

Questions Related to problems on percentage

They forecast 20 mm of rain, but we really got 25 mm. Find the error in percentage.

  1. $-20\%$

  2. $-10\%$

  3. $10\%$

  4. None of these


Correct Option: A
Explanation:

$\dfrac{Approximate Value - Exact Value}{Exact \  Value} \times100$
$\dfrac{20-25}{25} \times 100$ = $\dfrac{-5}{25} \times 100$
$\dfrac{-100}{5}$ = $-20$
Percentage of error $ = - 20\%$.

By evaluating $\dfrac{2.8^3\times 1.2^2}{0.56+3.78}$, closest estimate answer is:

  1. $7$

  2. $70$

  3. $0.7$

  4. None of these


Correct Option: A
Explanation:

We need to evaluate $\dfrac{2.8^3 \times 1.2^2}{0.56+3.78}$

$\Rightarrow$  $\dfrac{3^3 \times 1.44}{4.34}$    $[\because\,\, 2.8\approx 3]$
$\Rightarrow$  $\dfrac{27\times 1}{4}$     $[\because\,\, 1.44\approx 1\,\text{and}\,\,4.34\approx 4]$
$\Rightarrow$  $6.75\approx 7.$
Therefore, $\dfrac{2.8^3\times 1.2^2}{0.56+3.78}=7$

Pankaj expected to earn $425 in a week. In fact he earned $500. What was the percentage error?

  1. $25\%$

  2. $15\%$

  3. $11.5\%$

  4. None of these


Correct Option: B
Explanation:

$\Rightarrow$  Here, Approximate value is $\$425$.

$\Rightarrow$  Exact value is $\$500$.
$\Rightarrow$  $\%\,Error=\dfrac{|Approximate\,value-Exact\,value|}{|Exact\,value|}\times 100$

$\Rightarrow$  $\%\,Error=\dfrac{|425-500|}{|500|}\times 100$

$\Rightarrow$  $\%\,Error=\dfrac{|-75|}{500}\times 100=15\%$

I estimated that the repairs to my car would cost $80. In fact they cost $120. What was the percentage error?

  1. $33.3 \%$

  2. $30.3 \%$

  3. $31.3 \%$

  4. None of these


Correct Option: A
Explanation:

$\dfrac{Approximate Value - Exact Value}{Exact \  Value} \times100$


$\dfrac{80-120}{120} \times 100$ = $\dfrac{40}{120} \times 100$'

$\dfrac{100}{3}$ = $33.3$


Percentage of error $ = 33.3\%$.

Ritika expected to get $50 for her birthday, but she only got $35. What was the percentage error?

  1. $45.9\%$

  2. $32.8\%$

  3. $42.9\%$

  4. None of these


Correct Option: C
Explanation:

$\dfrac{Approximate Value - Exact Value}{Exact Value} \times100$


$\dfrac{50-35}{35} \times 100$ = $\dfrac{15}{35} \times 100$
$\dfrac{1500}{35}$ = $42.9$
percentage of error $42.9$.

Susan tries to read 50 pages of her book every day.  One week (7 days) she only managed to read 280 pages. What was the percentage error?

  1. $25\%$

  2. $15\%$

  3. $2.5\%$

  4. None of these


Correct Option: A
Explanation:

$\Rightarrow$  Here, Approximate value of pages for one week = $50\times 7=350$

$\Rightarrow$  Exact value is $280$
$\Rightarrow$  $\%\,Error=\dfrac{|Approximate\,value-Exact\,value|}{|Exact\,value|}\times 100$

$\Rightarrow$  $\%\,Error=\dfrac{|350-280|}{280}\times 100$

$\Rightarrow$  $\%\,Error=\dfrac{70}{280}\times 100=25\%$

What is the percent error in using $3.14$ as an approximation for $\pi$ (which is $3.14159265358979323846$...) ?

  1. $0.5\%$

  2. $0.05\%$

  3. $0.005\%$

  4. None of these


Correct Option: B
Explanation:

$\Rightarrow$   Here Approximate value of $\pi$ is $3.14$.

$\Rightarrow$   Exact value of $\pi$ is $3.141592$

$\Rightarrow$   $\%\,Error=\dfrac{|Approximate\,valu-Exact\,value|}{|Exact\,value|}\times 100$

$\Rightarrow$  $\%\,Error=\dfrac{|3.14-3.141592|}{|3.141592|}\times 100$
$\Rightarrow$   $\%Error=0.05\%$

Estimated value of square root of $650$ is

  1. $25.495$

  2. $24.495$

  3. $2.5495$

  4. None of these


Correct Option: A
Explanation:

$\Rightarrow$   Here we have to find square root of $650$

$\Rightarrow$  $\sqrt{650}=\sqrt{25\times 26}$
$\Rightarrow$  $\sqrt{650}=5\sqrt{26}$
$\Rightarrow$  $\sqrt{650}=5\times  5.09$
$\Rightarrow$  $\sqrt{650}=25.495$

Round off value of $78.25$m to nearest $10 $m is

  1. $77$ m

  2. $78$ m

  3. $80$ m

  4. None of these


Correct Option: B
Explanation:

Given value is $78.25$

It lies between $78$ and $79.$

But $78.25 < 78.5$ i.e. $78.25$ is closer to $78$ than $79.$

$\therefore  78.25$ should be rounded off to $78m.$

In an examination where full marks were $1000$, A gets $20\%$ more than B, B gets $20\%$ more than C, and C gets $15\%$ less than D. If A got $400$, what percentage of full marks did D get approximately ?

  1. $30\%$

  2. $35\%$

  3. $40\%$

  4. $45\%$


Correct Option: B
Explanation:

Full marks$=1000$

Let assume D got $x\%$ marks

 according to the question
 $C=85\%\times x=0.85x$
 $B=120\%\times 0.85x=1.02x$
 $A=120\%\times 1.02x=1.224x$
Now $A=400$

$1.224x=400$
$\implies x=327$
$\therefore$ percent of $D=(327/1000)\times 100=32.7\%\approx35\%$