Given:${a} _{1}{x}^{2}+{b} _{1}x+{c} _{1}=0$ ........$(1)$
${a} _{2}{x}^{2}+{b} _{2}x+{c} _{2}=0$ ........$(2)$
Let $\alpha,\,\beta$ be the roots of ${a} _{1}{x}^{2}+{b} _{1}x+{c} _{1}=0$ ........$(1)$
$\Rightarrow\,\alpha+\beta=-\dfrac{{b} _{1}}{{a} _{1}}$ and
$\alpha\beta=\dfrac{{c} _{1}}{{a} _{1}}$
Given:Roots of $(1)$ are reciprocal to $(2)$
$\dfrac{1}{\alpha}+\dfrac{1}{\beta}=-\dfrac{{b} _{2}}{{a} _{2}}$ and $\dfrac{1}{\alpha\beta}=\dfrac{{c} _{2}}{{a} _{2}}$
$\Rightarrow\,\dfrac{\alpha+\beta}{\alpha\beta}-\dfrac{{b} _{2}}{{a} _{2}}$ and $\dfrac{1}{\alpha\beta}=\dfrac{{c} _{2}}{{a} _{2}}$
Using $\alpha+\beta=-\dfrac{{b} _{1}}{{a} _{1}}$ and $\alpha\beta=\dfrac{{c} _{1}}{{a} _{1}}$ we have
$\Rightarrow\,\dfrac{-\dfrac{{b} _{1}}{{a} _{1}}}{\dfrac{{c} _{1}}{{a} _{1}}}=-\dfrac{{b} _{2}}{{a} _{2}}$ and $\dfrac{1}{\dfrac{{c} _{1}}{{a} _{1}}}=\dfrac{{c} _{2}}{{a} _{2}}$
$\Rightarrow\,\dfrac{-{b} _{1}}{{c} _{1}}=-\dfrac{{b} _{2}}{{a} _{2}}$ and
$\dfrac{{a} _{1}}{{c} _{1}}=\dfrac{{c} _{2}}{{a} _{2}}$
$\Rightarrow\,\dfrac{{b} _{1}}{{b} _{2}}=\dfrac{{c} _{1}}{{a} _{2}}$ and
$\dfrac{{a} _{1}}{{c} _{1}}=\dfrac{{c} _{2}}{{a} _{2}}$
$\Rightarrow\,\dfrac{{b} _{1}}{{b} _{2}}=\dfrac{{c} _{1}}{{a} _{2}}$ and
$\dfrac{{c} _{1}}{{a} _{1}}=\dfrac{{a} _{2}}{{c} _{2}}$
$\Rightarrow\,\dfrac{{b} _{1}}{{b} _{2}}=\dfrac{{c} _{1}}{{a} _{2}}$ and
$\dfrac{{c} _{1}}{{a} _{2}}=\dfrac{{a} _{1}}{{c} _{2}}$
$\therefore\,\dfrac{{b} _{1}}{{b} _{2}}=\dfrac{{c} _{1}}{{a} _{2}}=\dfrac{{a} _{1}}{{c} _{2}}$
Option$(b)$ is correct.