Tag: reciprocal equations

Questions Related to reciprocal equations

Solve the equation: $x^{-2}-2x^{-1}=8$

  1. $\dfrac{3}{4}, \dfrac{-1}{2}$

  2. $\dfrac{1}{4}, \dfrac{-1}{3}$

  3. $\dfrac{1}{3}, \dfrac{-1}{2}$

  4. $\dfrac{1}{4}, \dfrac{-1}{2}$


Correct Option: D
Explanation:

Given, $x^{-2}-2x^{-1}=8$

$\Rightarrow \dfrac {1}{x^2}-\dfrac {2}{x}=8$
$\Rightarrow \dfrac {1-2x}{x^2}=8$
$\Rightarrow 1-2x=8x^2$
$\Rightarrow 8x^2+2x-1=0$
$\Rightarrow (2x+1)(4x-1)$
$\Rightarrow x=\dfrac {1}{4}, \dfrac {-1}{2}$

The number of solutions $(x, y, z)$ to the system of equations $ x + 2y + 4z = 9, 4yz + 2xz + xy = 13, xyz = 3 $ such that at least two of $ x, y, z$ are integers is

  1. $3$

  2. $5$

  3. $6$

  4. $4$


Correct Option: B
Explanation:
Let the roots of the system equation are:
$\alpha =x,\beta =2y,\gamma =4z$
$\alpha +\beta +\gamma =x+2y+4z=9$
$\alpha \beta +\beta \gamma +\gamma \alpha =2xy+8yz+yzx$
$=2(4yz+2xz+xy)\Rightarrow 26$
$\alpha \beta \gamma =8xyz\Rightarrow 24$
Thus,our polynomial should be:
$P^{3}-9P+26P-24=0$
$(P-2)(P-3)(P-4)=0$
since our roots are :
$\alpha =x,\beta =2y$ and $\gamma =4z$
$(x,2y,4z)=(2,3,4)$ or its permutations,or 6 combination.
However,note that one case if,
$x=4,2y=3$ and $4z=2$
$(x,y,z)=(4,\dfrac{3}{2},\dfrac{1}{2})$
which two of the roots are not an integer :Excluding of this case ,we have five solutions.

Solve the equation $\sqrt{4x^2-7x-15}-\sqrt{x^2-3x}=\sqrt{x^2-9}$

  1. $2, 3$

  2. $1, 6$

  3. $-1, 3$

  4. $1, 3$


Correct Option: D
Explanation:

Given equation is $\sqrt { 4{ x }^{ 2 }-7x-15 } =\sqrt { { x }^{ 2 }-9 } +\sqrt { { x }^{ 2 }-3x } $

$\Rightarrow \sqrt { x-3 } (\sqrt { 4x+5 } )=\sqrt { x-3 } (\sqrt { x+3 } +\sqrt { x } )$
Therefore $x=3$ is one solution and $\sqrt { 4x+5 } =\sqrt { x+3 } +\sqrt { x } $
By squaring above equation on both sides , we get $x+1=\sqrt{x(x+3)}$
Again square it on both sides , we get $x^{2}+2x+1=x^{2}+3x$
$\Rightarrow x=1$
Therefore option $D$ is correct

The roots of $a _ { 1 } x ^ { 2 } + b _ { 1 } x + c _ { 2 } = 0$ are reciprocal of the roots of the equation $a _ { 2 } x ^ { 2 } + b _ { 2 } x + c _ { 2 } = 0$

  1. $\dfrac { a _ { 1 } } { a _ { 2 } } = \dfrac { b _ { 1 } } { b _ { 2 } } = \dfrac { c _ { 1 } } { c _ { 2 } }$

  2. $\dfrac { b _ { 1 } } { b _ { 2 } } = \dfrac { c _ { 1 } } { a _ { 2 } } = \dfrac { a _ { 1 } } { c _ { 2 } }$

  3. $\dfrac { a _ { 1 } } { a _ { 2 } } = \dfrac { b _ { 1 } } { c _ { 2 } } = \dfrac { c _ { 1 } } { b _ { 2 } }$

  4. $a _ { 1 } = \dfrac { 1 } { a _ { 2 } } , b _ { 1 } = \dfrac { 1 } { b _ { 2 } } , c _ { 1 } = \dfrac { 1 } { c _ { 2 } }$


Correct Option: B
Explanation:
Given:${a} _{1}{x}^{2}+{b} _{1}x+{c} _{1}=0$     ........$(1)$
${a} _{2}{x}^{2}+{b} _{2}x+{c} _{2}=0$     ........$(2)$

Let $\alpha,\,\beta$ be the roots of ${a} _{1}{x}^{2}+{b} _{1}x+{c} _{1}=0$     ........$(1)$

$\Rightarrow\,\alpha+\beta=-\dfrac{{b} _{1}}{{a} _{1}}$ and 

$\alpha\beta=\dfrac{{c} _{1}}{{a} _{1}}$

Given:Roots of $(1)$ are reciprocal to $(2)$

$\dfrac{1}{\alpha}+\dfrac{1}{\beta}=-\dfrac{{b} _{2}}{{a} _{2}}$ and $\dfrac{1}{\alpha\beta}=\dfrac{{c} _{2}}{{a} _{2}}$

$\Rightarrow\,\dfrac{\alpha+\beta}{\alpha\beta}-\dfrac{{b} _{2}}{{a} _{2}}$ and $\dfrac{1}{\alpha\beta}=\dfrac{{c} _{2}}{{a} _{2}}$

Using $\alpha+\beta=-\dfrac{{b} _{1}}{{a} _{1}}$ and $\alpha\beta=\dfrac{{c} _{1}}{{a} _{1}}$ we have

$\Rightarrow\,\dfrac{-\dfrac{{b} _{1}}{{a} _{1}}}{\dfrac{{c} _{1}}{{a} _{1}}}=-\dfrac{{b} _{2}}{{a} _{2}}$ and $\dfrac{1}{\dfrac{{c} _{1}}{{a} _{1}}}=\dfrac{{c} _{2}}{{a} _{2}}$

$\Rightarrow\,\dfrac{-{b} _{1}}{{c} _{1}}=-\dfrac{{b} _{2}}{{a} _{2}}$ and
 
$\dfrac{{a} _{1}}{{c} _{1}}=\dfrac{{c} _{2}}{{a} _{2}}$

$\Rightarrow\,\dfrac{{b} _{1}}{{b} _{2}}=\dfrac{{c} _{1}}{{a} _{2}}$ and 

$\dfrac{{a} _{1}}{{c} _{1}}=\dfrac{{c} _{2}}{{a} _{2}}$

$\Rightarrow\,\dfrac{{b} _{1}}{{b} _{2}}=\dfrac{{c} _{1}}{{a} _{2}}$ and 

$\dfrac{{c} _{1}}{{a} _{1}}=\dfrac{{a} _{2}}{{c} _{2}}$

$\Rightarrow\,\dfrac{{b} _{1}}{{b} _{2}}=\dfrac{{c} _{1}}{{a} _{2}}$ and 

$\dfrac{{c} _{1}}{{a} _{2}}=\dfrac{{a} _{1}}{{c} _{2}}$

$\therefore\,\dfrac{{b} _{1}}{{b} _{2}}=\dfrac{{c} _{1}}{{a} _{2}}=\dfrac{{a} _{1}}{{c} _{2}}$

Option$(b)$ is correct.