Tag: image formation by lens

Questions Related to image formation by lens

The image of a candle flame formed by a lens is obtained on a  screen placed on the other side of the lens. If the image is three times the size of the flame and the distance between lens and image is $80\ cm$, at what distance should the candle be placed from the lens ? 

  1. $50\ cm$

  2. $-36.67\ cm$

  3. $-26.67\ cm$

  4. $80\ cm$


Correct Option: C
Explanation:

Given, magnification $=-\dfrac{v}{u}=3$ and $v=80\ cm$
So, object distance, $u=-\dfrac{v}{3}=-\dfrac{80}{3}=-26.67\ cm$

An object of  $5\mathrm { cm }$  is placed before a concave mirror at a distance of  $40\mathrm { cm } .$  If its focal length is  $20\mathrm { cm }$  then what is the magnification of the image.

  1. $40$

  2. $20$

  3. $5$

  4. $-1$


Correct Option: D
Explanation:

$\begin{array}{l} \frac { 1 }{ v } =\frac { 1 }{ t } -\frac { 1 }{ u }  \ =\frac { { -1 } }{ { 20 } } -\frac { 1 }{ { -40 } } =\frac { { -1 } }{ { 40 } }  \ v=-40 \ m=-\frac { v }{ u } =-\frac { { -40 } }{ { -40 } } =-1 \ \therefore \, \, 1\times 1=1 \ Ans.\, \, (D) \end{array}$

In displacement method, the distance between object and screen is 96 cm. The ratio of lengths of two images formed by a converging lens placed between them is 4. Then :

  1. ratio of the length of object to the length of shorter image is 2

  2. distance between the two positions of the lens is 32 cm

  3. focal length of the lens is 64/3 cm

  4. when the shorter image is formed on screen, distance of the lens from the screen is 32 cm


Correct Option: A,B,C,D
Explanation:
Given -  Distance between object and screen $a=96cm$ ,

             Ratio of lengths of images $=4:1$ ,

Let length of larger image is $II'=4x$ ,

      length of smaller image is $II''=x$ ,

      length of object is $OO'$ .

we know that ,  $OO'=\sqrt{II'\times II''}$ ,

                         $OO'=\sqrt{4x\times x}=2x$ ,

(A) Hence ratio of length of object to the length of shorter image will be ,

          $\dfrac{OO'}{II''}=\dfrac{2x}{x}=2$

(B) We have ,

                   $\dfrac{II''}{OO'}=\dfrac{u}{d+u}$ ,

                    $\dfrac{1}{2}=\dfrac{u}{d+u}$ ,

or                $d=u$ ,

now , by    $u=\dfrac{a-d}{2}$ ,

or              $d=\dfrac{96-d}{2}$ ,

or              $d=32cm$

(C) By using , $f=\dfrac{a^{2}-d^{2}}{4a}$ ,

or                  $f=\dfrac{96^{2}-32^{2}}{4\times96}$ ,

or                  $f=64/3cm$ 

(D) When shorter image is on the screen , 

                   $u=\dfrac{a-d}{2}$ ,

or              $u=\dfrac{96-32}{2}$ ,

or              $u=32cm$

A lens forms a real image of an object on a screen placed at a distance of 100 cm from the screen. If the lens is moved by 20 cm towards the screen, another image of the object is formed on the screen. The focal length of the lens is:

  1. 12 cm

  2. 24 cm

  3. 36 cm

  4. 48 cm


Correct Option: B
Explanation:

From lens formula, $\displaystyle \frac{1}{v}-\frac{1}{u}=\frac{1}{f}$


$\displaystyle \frac{1}{100-u}+\frac{1}{u}=\frac{1}{f}$.....(1)

$\displaystyle \frac{1}{80-u}+\frac{1}{u+20}=\frac{1}{f}$........(2)

From (1) and (2),

$\displaystyle \frac{1}{100-u}+\frac{1}{u}=\frac{1}{80-u}+\frac{1}{u+20}$

$\displaystyle \frac{20}{\left ( u \right )\left ( u+20 \right )}=\frac{20}{\left ( 80-u \right )\left ( 100-u \right )}$

$\Rightarrow u^{2}+20 u=u^{2}-180 u+8000$

$\Rightarrow u=40$

$\displaystyle \frac{1}{60}+\frac{1}{40}=\frac{1}{f}$

$\Rightarrow f=24cm$

An object and a screen are mounted on an optical bench and a converging lens is placed between them so that a sharp image is received on the screen. The linear magnification of the image is 2.5. The lens is now moved 30 cm nearer to the screen and a sharp image is again formed on the screen. The focal length of the lens is:

  1. $14.0 cm$

  2. $14.3 cm$

  3. $14.6 cm$

  4. $14.9 cm$


Correct Option: B
Explanation:

Given $\displaystyle \frac{v}{u} = 2.5$
$v= 2.5 u$
again $ v-u = 30$
$v=30+u$
$2.5 u = 30 +u$
$1.5 u=30$
$u=20$
Now, $\displaystyle \frac{1}{f} = \frac{1}{u} + \frac{1}{v} = \frac{u+v}{uv}$
$f = \displaystyle \frac{uv}{u+v}= \frac{2.5 u^2}{3.5 u}$
   $\displaystyle =\frac{5}{7}u = \frac{5 \times 20}{7} = \frac{100}{7}=14.3cm$