Tag: some functions and their graphs -i
Questions Related to some functions and their graphs -i
The set values of $x$ for which function $f(x)=x\ln {x}-x+1$
Let $f$ be an injective map with domain {x, y, z} and range {1, 2, 3} such that exactly one of the following statements is correct and the remaining are false :
$f (x) = 1, f (y) \sqrt 1, f (z) \sqrt 2$. The value of $f^{-1} (1)$ is
$c \to c\,\,is\,defined\,as\,f\left( x \right) = \frac{{ax + b}}{{cx + d}}\,\,bd \ne 0$.then f is a constant function when
$f:c \to c$ is defined as $f(x) = \dfrac{{ax + b}}{{cx + d}},bd \ne 0$ then $f$ is a constant function when,
If $f(n+1)=f(n)$ for all $n\in N, f(7)=5$ then $f(35)=$
Let $f(x)$ is a cubic polynomial with real coefficients, $x\ \in R$ such that $f"(3)=0,\ f'(5)=0$
If $f(3)=1$ and $f(5)=-3$, then $f(1)$ is equal to
The complete set of values of $x$ for which the function $f(x)=2\tan^{-1}x+\sin^{-1} \dfrac{2x}{1+x^{2}}$ behaves like a constant function with positive output is equal to
Let f be a polynomial function such that $f(3x)=f'(x).f"(x)$, for all $x\epsilon R$. Then :
If $f \left( \dfrac { x + y } { 2 } \right) = \dfrac { f ( x ) + f ( y ) } { 2 }$ for all $x , y \in R$ and $f ^ { \prime } ( o ) = - 1 , f ( o ) = 1$ then $f(2)=$
let $f(x)$ be a polynomial of degree $4$ having extreme values at $x=2$.if $\underset { x\rightarrow 0 }{ lim } \left( \frac { f\left( x \right) }{ { x }^{ 2 } } +1 \right) =3$ then $f(1)$