Tag: union and intersection of sets

Questions Related to union and intersection of sets

Let $S=\left{ \left( x,y \right) :\dfrac { y\left( 3x-1 \right)  }{ x\left( 3x-2 \right)  } <0 \right}$ and $S'=\left{ \left( x,y \right) \in A\times B;\ -1\le A\le 1,-1\le B\le 1 \right} $ There area of $S\cap S'$ is

  1. $1$

  2. $3$

  3. $2$

  4. $4$


Correct Option: A

Let A={1, 2, 3, 4), B={2, 3, 4, 5}, then $n{ (A\times B)\cap (B\times A)} =$?

  1. 13

  2. 16

  3. 9

  4. 10


Correct Option: A

Let $P={ \theta :sin\theta -cos\theta =\sqrt { 2 } cos\theta } $ and $Q={ sin\theta + cos\theta =\sqrt { 2 } sin\theta } $ be two sets. Then:

  1. $P\subset Q\quad and\quad Q-P\neq \emptyset $

  2. $Q\subset P$

  3. $P\subset Q$

  4. $P=Q$


Correct Option: D
Explanation:

$P = \left{ {\theta :\sin \theta  - \cos \theta  = \sqrt 2 \cos \theta } \right}$

$Q = \left{ {\theta :\sin \theta  + \cos \theta  = \sqrt 2 \sin \theta } \right}$
From $P$
$\sin \theta  - \cos \theta  = \sqrt 2 \cos \theta $
$\sin \theta  = \left( {\sqrt 2  + 1} \right)\cos \theta $
$\frac{{\sin \theta }}{{\cos \theta }} = \left( {\sqrt 2  + 1} \right)$
$\tan \theta  = \left( {\sqrt 2  + 1} \right)$
from $Q$
$\sin \theta  + \cos \theta  = \sqrt 2 \sin \theta $
$\sin \theta \left( {\sqrt 2  - 1} \right) = \cos \theta $
$\frac{{\sin \theta }}{{\cos \theta }} = \left( {\sqrt 2  - 1} \right)$
$\tan \theta  = \left( {\sqrt 2  - 1} \right)$
$\tan \theta  = \frac{1}{{\sqrt 2  - 1}} \times \frac{{\sqrt 2  + 1}}{{\sqrt 2  + 1}} = \sqrt 2  + 1$
$\therefore P = Q$
Hence,
option $(D)$ is correct answer.

If $A = {1, 2, 3, 4, 5}, B = {2, 4, 6, 8}$ and C= ${3,4,5,6}$, 

then verify : $A - (B \cup C) = (A - B) \cap (A - C)$.

  1. True

  2. False


Correct Option: A
Explanation:
Given, $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6, 8\}$ and $C=\{3,4,5,6\}$

For the LHS:

Union of two sets will have the elements of both sets.

So, $ B \cup C = \{2,3,4,5,6,8 \}$ 

$ A - (B \cup C) $ will have elements of $A$ which are not in $ (B \cup C) $

So, $ A - (B \cup C) = \{ 1 \}$ ..... $(1)$

For the RHS:

$ A - B $ will have elements of $A$ which are not in $B$.

So, $ A - B = \{ 1,3,5 \}$  

$ A - C $ will have elements of $A$ which are not in $C$.

So, $ A - C = \{ 1,2 \}$  

Intersection of two sets has the common elements of both the sets. 

$\Rightarrow (A - B) \cap (A - C) = \{1\}$ ..... $(2)$

From $(1)$ and $(2),$ we have

$ A - (B \cup C) =(A - B) \cap (A - C) $

Hence, the given expression is true.

Let $A = {$ multiples of $3$ less than $20 }$
      $B = {$ multiples of $5$ less than $20}$
Then  $A$ $\displaystyle\cap$ $B$ is

  1. ${3, 5}$

  2. ${5, 9}$

  3. ${15}$

  4. $\displaystyle\phi $


Correct Option: C
Explanation:

$A = {$ multiples of $ 3 $ less than $20}$

    $= {3,6,9,12,15,18}$
$B={ $ multiples of $5$ less than $20}$
    $= {5,10,15}$

$A \cap B = 15$

Let $P _1$ be the set of all prime numbers, i.e., $P _1=\left {2, 3, 5, 7, 11, ....\right }$, Let $Pn=\left {np|p\epsilon P _1|\right }$, i.e., the set of all prime multiples of n. Then which of the following sets is non empty?

  1. $P _1\cap P _{23}$

  2. $P _7\cap P _{21}$

  3. $P _{12}\cap P _{20}$

  4. $P _{20}\cap P _{24}$


Correct Option: C
Explanation:

Check by option
$P _{12}=\left {24, 36, 60, 84, ....\right }$
$P _{20}=\left {40, 60, 100, .....\right }$
$P _{12}\cap P _{20}$ has common element.

If $A={a,b,c,d,e,f}$ and $B={c,e,f,g,h}$, then the number of elements of $(A-B)\cap A$ is

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: D
Explanation:

$A-B={a,b,d}$
$(A-B)\cap A={a,b,d}$

In a group of $760$ persons, $510$ can speak Hindi and $360$ can speak English. Find how many can speak Hindi only.

  1. $250$

  2. $400$

  3. $1270$

  4. $150$


Correct Option: B
Explanation:
People who can speak both Hindi and English $= n (H ∩ E)$

$n (P) = n(E) + n(H) – n (H ∩ E)$

$n(E\cap H)=510+360-760=110$

We can see that, $H$ is disjoint union of $n(H–E)$ and $n (H ∩ E).$


(If $A$ and $B$ are disjoint then $n (A ∪ B) = n(A) + n(B))$

$∴ H = n(H–E) ∪ n (H ∩ E).$

$⇒ n(H) = n(H–E) + n (H ∩ E).$

$⇒ 510 = n (H – E)+ 110$

$⇒ n(H–E) = 400.$

There are $25$ trays on a table in the cafeteria. Each tray contains a cup only, a plate only, or both a cup and a plate. If $15$ of the trays contain cups and $21$ of the trays contain plates, how many contain both a cup and a plate?

  1. $10$

  2. $11$

  3. $12$

  4. $13$


Correct Option: B
Explanation:
Let $'A'$ denote the set with a cup
$'B'$ denote the set with a plate
$'A$ $\cap$ $B'$ denote the set with both a cup and a plate
$'A$ $\cup$ $B'$ denote the set with the trays either a cup or a plate
$n($ $X)$ denote the number of elements in the set $'X'$

Given, total number of trays $n(A$ $\cup$ $B)$ $=$ $25$
Number of trays that contain cups $n($$A)$ $=$ $15$
Number of trays that contain cups $n($$B)$ $=$ $21$

To find the trays with both a cup and a plate $n(A$ $\cap$ $B)$,

We know that
$n(A$ $\cup$ $B)$ $=$ $n($$A)$$+$ $n($$B)$ $-$ $n(A$ $\cap$ $B)$
Rearranging the terms, we get
$n(A$ $\cap$ $B)$ $=$ $n($$A)$$+$ $n($$B)$ $-$ $n(A$ $\cup$ $B)$
From the above,
$n(A$ $\cap$ $B)$ $=$ $15$ $+$ $21$ $-$ $25$
$=$ $11$
$n(A$ $\cap$ $B)$ $=$ $11$

Therefore, number of trays with both a cup and a plate is $'11'$.

Let A = {x : x is a square of a natural number and x is less than 100} and B is a set of even natural numbers. What is the cardinality of $ A \cap B$ ?

  1. 4

  2. 5

  3. 9

  4. None of the above


Correct Option: A
Explanation:

$A = {1, 4. 9. 16, 25, 36, 49, 64, 81 }$

$B = {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 26, 28, 30, 32, 34, 36, 38,...}$
$A \cap B = {4, 16, 36, 64}$
Hence, $n(a \cap B) = 4$.