Tag: non singular matrix
Questions Related to non singular matrix
The matrix $A=\begin{bmatrix}1&3&2\1&x-1&1\2&7&x-3\end{bmatrix}$ will have inverse for every real number x except for
If $A=\begin{bmatrix} 3 & -1+x & 2 \ 3 & -1 & x+2 \ x+3 & -1 & 2 \end{bmatrix}$ is singular matrix and $x\in [-5, -2]$ then x=?$
If $A=\begin{bmatrix} 0 & x & 16 \ x & 5 & 7 \ 0 & 9 & x \end{bmatrix}$ is singular, then the possible values of $x$ are
If $\omega\neq 1$ is a cube root of unity, then
$A=\begin{bmatrix}1+2\omega ^{100}+\omega ^{200}&\omega ^2 &1 \1 &1+\omega ^{101}+2\omega ^{202} &\omega \\omega & \omega ^2 &2+ \omega ^{100}+2\omega ^{200}\end{bmatrix}$
If $\displaystyle A=\begin{bmatrix} \frac{1}{2}\left ( e^{ix}+ e^{-ix}\right )&\frac{1}{2}\left ( e^{ix}- e^{-ix}\right ) \\frac{1}{2}\left ( e^{ix}- e^{-ix}\right ) &\frac{1}{2}\left ( e^{ix}+ e^{-ix}\right ) \end{bmatrix}$ then $A^{-1}$ exists
Let $A$ and $B$ be two non-null square matrices. If the product $AB$ is a null matrix, then
Let $A=\begin{bmatrix}x+\lambda& x&x\x &x+\lambda&x\x&x&x+\lambda \end{bmatrix}$, then $A^{-1}$ exists if
If adj $B=A$ and $|P|=|Q|=1$, then $adj (\left( { Q }^{ -1 }{ BP }^{ -1 } \right)$ is equal ?
- ← Previous
- 1
- 2
- 3
- 4
- 5
- Next →