Tag: dividing decimals

Questions Related to dividing decimals

Which one of the following is a non-terminating and repeating decimal?

  1. $\dfrac {13}{8}$

  2. $\dfrac {3}{16}$

  3. $\dfrac {3}{11}$

  4. $\dfrac {137}{25}$


Correct Option: C
Explanation:

Clear, $\dfrac {1}{8}=0.125, \dfrac {1}{16}=0.0625$ and $\dfrac {1}{25}=0.04$ are terminating decimal fractions.
So, $\dfrac {3}{11}=0.27272727....$ is the non-terminating and repeating decimal.

$4.036$ divided by $0.04$ gives:

  1. $1.009$

  2. $10.09$

  3. $100.9$

  4. None of these


Correct Option: C
Explanation:

$\dfrac { 4.036 }{ 0.04 } =\dfrac { 403.6 }{ 4 } =100.9$

Divide:
$12.36\div12$

  1. $1.3$

  2. $1.03$

  3. $13$

  4. $0.13$


Correct Option: B
Explanation:
Multiplying and dividing by $100$ we get
$12.36\div 12 = (1236\div 12)\div100$
                    $=1.03$

Evaluate:
$23.112\div2.4$

  1. $9.63$

  2. $96.3$

  3. $9.06$

  4. $963$


Correct Option: A
Explanation:
Multiplying and dividing by $100$ we get
$23.112\div 2.4 = (23112\div 24)\div100$
                    $=9.63$

Divide:
$105.55\div 5$

  1. $21.11$

  2. $2.111$

  3. $0.211$

  4. $211.1$


Correct Option: A
Explanation:
Multiplying and dividing by $100$ we get
$105.55\div 5 = (10555\div 5)\div100$
                    $=21.11$

Evaluate:
$2446.83\div3.1$

  1. $244.1$

  2. $789.3$

  3. $78.93$

  4. $7.893$


Correct Option: B
Explanation:
Multiplying and dividing by $100$ we get
$2446.83\div 3.1 = (244683\div 31)\div10$
                    $=789.3$

Evaluate: $25.25\div2.5$

  1. $1.001$

  2. $11$

  3. $1.1$

  4. $10.1$


Correct Option: D
Explanation:
Multiplying and dividing by $10$ we get
$25.25\div 2.5 = (2525\div 25)\div10$
                    $=10.1$

Solve the following:

$127.1÷1000$

Ans : $0.1271$

  1. True

  2. False


Correct Option: A
Explanation:

Given, $127.1\div 1000$


Could be written as,


$= \dfrac{1271}{10}\times \dfrac{1}{1000}$

$= \dfrac{1271}{10000}$

$= 0.1271$

So, given statement is true.

Solve the following:
$0.45\div 5$


Ans: $0.09$

  1. True

  2. False


Correct Option: A
Explanation:

Given, $0.45\div 5$


Could be written as,


$= \dfrac{45}{100}\times \frac{1}{5}$

$= \dfrac{9}{100}$

$= 0.09$

So, given statement is true.

Solve the following:
$0.4\div 20$


Ans: $0.02$

  1. True

  2. False


Correct Option: A
Explanation:

Given, $0.4\div 20$


Could be written as,


$= \dfrac{4}{10}\times \dfrac{1}{20}$

$= \dfrac{2}{100}$

$= 0.02$
So, given statement is true.