Given : Hyperbola,
$xy-3x+4y+2=0$---------------1
For Asymptotes,
Let the Asymptote's Equation be $y=mx+c$
And then finding $\phi _{n}(m)$ by replacing $y\rightarrow m$ and $x\rightarrow 1$
As $n=2$,
$\phi _{2}(m)=m$
putting $\phi _{2}(m)=0$, we get $m=0$
By taking $m=0$, we will get only one asymptote parallel to X-axis, so let's find them with putting the co-efficients of higher terms to zero.
For Asymptote parallel to X-axis, we put co-efficient of highest degree of x to zero that is here 1, so co-efficient of x$=0$
$\Rightarrow (y-3)=0$------------2(from Equation 1)
For Asymptote parallel to Y-axis, we put co-efficient of highest degree of y to zero which is 1 here, co-efficient of y$=0 (from Equation 1)
$\Rightarrow x+4=0$------------3
The Equation 2 & 3 are asymptotes to Equation 1.
$x+4=0$ & $y-3=0$