Tag: finding square of a number

Questions Related to finding square of a number

Find the square of the following number without multiplication.

46

  1. 2116

  2. 2002

  3. 2424

  4. 1988


Correct Option: A
Explanation:

${46}^{2} = 46\times46 = 2116$

If sin$\theta -cosec  \theta =\sqrt{5},$ then the value of sin  $\theta  + cosec  \theta$ is:

  1. $\sqrt{3}$

  2. 1

  3. 3

  4. 9


Correct Option: C
Explanation:

$\Rightarrow \sin\theta-cosec\theta=\sqrt{5}$


$\Rightarrow \sin\theta-\dfrac{1}{\sin\theta}=\sqrt{5}$      $(\because cosec\theta=\dfrac{1}{\sin\theta})$

$\Rightarrow \sin^2\theta-\sqrt{5}\sin\theta-1=0$

Solving equation to get roots.

$\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}=\dfrac{\pm3+\sqrt{5}}{2}$ (substitute values to get roots)

To find:-

$\sin\theta+cosec\theta$

Using $\dfrac{3+\sqrt{5}}{2}$

$=\dfrac{3+\sqrt{5}}{2}+\dfrac{2}{3+\sqrt{5}}$

$=\dfrac{(3+\sqrt{5})^2+4}{2(3+\sqrt{5})}$

$=\dfrac{9+4+5+6\sqrt{5}}{2(3+\sqrt{5})}$

$=\dfrac{6(3+\sqrt{5})}{2(3+\sqrt{5})}$

$=3$


Using $\dfrac{-3+\sqrt{5}}{2}$

$=\dfrac{-3+\sqrt{5}}{2}+\dfrac{2}{-3+\sqrt{5}}$

$=\dfrac{(-3+\sqrt{5})^2+4}{2(-3+\sqrt{5})}$

$=\dfrac{9+4+5-6\sqrt{5}}{2(-3+\sqrt{5})}$

$=\dfrac{-6(-3+\sqrt{5})}{2(-3+\sqrt{5})}$

$=-3$


According to option answer is $3$

If $a+b+c=6$ and $ ab+bc+ca = 11 $
Find $\left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)$ ?
  1. $14$

  2. $25$

  3. $36$

  4. $47$


Correct Option: A
Explanation:
Given $a+b+c=6$ 

$(a+b+c)^2=36$

$(a^2+b^2+c^2)+2(ab+ba+ca)=36$

$a^2+b^2+c^2+(2\ast 11)=36$

$a^2+b^2+c^2=36-22=14$

Evaluating the following :
$(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$

  1. $1718\sqrt 3$

  2. $1718\sqrt 2$

  3. $1178\sqrt 3$

  4. $1178\sqrt 2$


Correct Option: D
Explanation:

Given term is $(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$


$\Rightarrow 2\left[\ ^{5}C _{1}\times 3^{4}\times (\sqrt{2})^{1}+\ ^{5}C _{3}\times 3^{2}\times (\sqrt{2})^{3}+\ ^{5}C _{5}\times 3^{0}\times (\sqrt{2})^{5}\right]$

$\Rightarrow 2\left[5\times 81\times\sqrt{2}+10\times 9\times 2\sqrt{2}+4\sqrt{2}\right]$

$\Rightarrow 2\sqrt{2}(405+180+4)$

$\Rightarrow 1178\sqrt{2}$

Evaluating the following :
$(1+2\sqrt{x})^{5}+(1-2\sqrt{x})^{5}$

  1. $2(1+40x^2+80x)$

  2. $2(1-40x+81x^2)$

  3. $2(1+40x+80x^2)$

  4. None of these


Correct Option: C
Explanation:
Given to evaluate is $(1+2\sqrt x)^5 +(1-2\sqrt x)^5$

$\Rightarrow 2[^{5}C _{0} (2\sqrt x)^0 +^5C _2 (2\sqrt x)^2 +^5C _4 (2\sqrt x)^4]$

$\Rightarrow 2[1+10\times 4x+5\times 16x^2]$

$\Rightarrow 2[1+40x+80x^2]$