Tag: fundamental theorem of algebra

Questions Related to fundamental theorem of algebra

The number of ordered pairs of integers (x,y) satisfying the equation
${ x }^{ 2 }+6x+{ y }^{ 2 }=4$ is

  1. 2

  2. 4

  3. 6

  4. 8


Correct Option: D
Explanation:
Given,

$x^2+6x+y^2=4$ 

$\Rightarrow x^2+6x+9+y^2=4+9$

$\Rightarrow x^2+3^2+2(3x)+y^=13$

$\Rightarrow (x+3)^2+y^2=13$

sum of two squares is $13$

$\therefore $ when $(x+3)^2=9,x=0,-6$ and $y^2=2,-2$ $\Rightarrow 4$ ordered pairs.

$\therefore $ when $(x+3)^2=4,x=-1,-5$ and $y^2=3,-3$ $\Rightarrow 4$ ordered pairs.

A total of $8$ pairs.

The solution set of the system of equations $\log _{ 3 }{ x } +\log _{ 3 }{ y } =2+\log _{ 3 }{ 2 } \quad and\quad \log _{ 27 }{ (x+y) } =\dfrac { 2 }{ 3 } $ is :

  1. {6,3}

  2. {3,6}

  3. {6,12}

  4. {12,6}


Correct Option: A
Explanation:
Given,

$\log _3\left(x\right)+\log _3\left(y\right)=2+\log _3\left(2\right)$

$\log _3\left(x\right)=2+\log _3\left(2\right)-\log _3\left(y\right)$

$x=3^{2+\log _3\left(2\right)-\log _3\left(y\right)}$

$=3^{\log _3\left(2\right)}\cdot \:3^{-\log _3\left(y\right)}\cdot \:3^2$

$=2\cdot \:3^{-\log _3\left(y\right)}\cdot \:3^2$

$=2y^{-1}\cdot \:3^2$

$\Rightarrow x=\dfrac{18}{y}$.......(1)

Now,

$\log _{27}\left(x+y\right)=\dfrac{2}{3}$

from (1)

$\log _{27}\left(\dfrac{18}{y}+y\right)=\dfrac{2}{3}$

$\dfrac{18}{y}+y=27^{\frac{2}{3}}$

$\Rightarrow 18+y^2=9y$

$y^2-9y+18=0$

$(y-3)(y-6)=0$

$\therefore y=3,6$

$x=\dfrac{18}{y}=\dfrac{18}{3}=6$

$x=\dfrac{18}{y}=\dfrac{18}{6}=3$

$(x,y)=\left \{ 6,3 \right \}or\left \{ 3,6 \right \}$

Number of real solutions of the equation $\sqrt { \log _{ 10 }{ (-x) }  } =\log _{ 10 }{ \sqrt { { x }^{ 2 } }  } $ is :

  1. zero

  2. exactly 1

  3. exactly 2

  4. 5


Correct Option: A
Explanation:
Given,

$\sqrt{\log _{10}(-x)}=\log _{10}(\sqrt{x^2})$

$\sqrt{\log _{10}(-x)}=\log _{10}x$

$\log _{10}\left(-x\right)=\left(\log _{10}\left(x\right)\right)^2$

$\log _{10}\left(-1\right)+\log _{10}\left(x\right)=\left(\log _{10}\left(x\right)\right)^2$

let $\log _{10}\left(x\right)=u$

$\log _{10}\left(-1\right)+u=\left(u\right)^2........\log _{10}(-1) \ is \ not \ defined$

$u=\mathrm{Undefined}$

$\:\log _{10}\left(x\right)=\mathrm{Undefined}:\quad x=10^{\mathrm{Undefined}}$

$x=10^{\mathrm{Undefined}}\space\mathrm{False}$

No solution for $\:x\in \mathbb{R}$

Number of solutions satisfying, $\sqrt { 5-{ log } _{ 2 }x } =3-{ log } _{ 2 }x$ are :

  1. 1

  2. 2

  3. 3

  4. 4


Correct Option: A
Explanation:

$\sqrt { 5-{ \log } _{ 2 }x } =3-{ \log } _{ 2 }x$                  ---- ( 1 )


Let $\log _2x=y$                     ----- ( 2 )


$\Rightarrow$  $\sqrt{5-y}=3-y$

Squaring both sides, 

$\Rightarrow$  $5-y=9-6y+y^2$

$\Rightarrow$  $y^2-5y+4=0$

$\Rightarrow$  $y^2-4y-y+4=0$

$\Rightarrow$  $y(y-4)-1(y-4)=0$

$\Rightarrow$  $(y-4)(y-1)=0$

$\Rightarrow$  $y=4$ and $y=1$

Substituting $y=1$ in ( 1 ) we get,

$\Rightarrow$  $\log _2x=1$

We know, $\log _ba=x\Rightarrow a=b^x$

$\therefore$  $x=2^1=2$

Substituting $y=4$ in ( 1 ) we get,

$\Rightarrow$  $\log _2x=4$

We know, $\log _ba=x\Rightarrow a=b^x$

$\therefore$  $x=2^4=16$

Substituting $\log _2x=1$ in ( 1 ) we get,

$\sqrt{5-1}=3-1$

$\Rightarrow$  $\sqrt{4}=2$

$\therefore$  $2=2$

Substituting $\log _2x=4$ in ( 1 ) we get,

$\sqrt{5-4}=3-4$

$\Rightarrow$  $\sqrt{1}=-1$

$\therefore$  $1=-1$

Hence, we can see only $\log _2x=1$ satisfying.

$\therefore$  $\sqrt { 5-{ \log } _{ 2 }x } =3-{ \log } _{ 2 }x$ has only $1$ solution.

Number of ordered pair(s) of (x,y) satisfying the system of equations, $\log _2 xy = 5$ and $\log _{\frac{1}{2}} \frac{x}{y} = 1$ is:

  1. one

  2. two

  3. three

  4. four


Correct Option: B
Explanation:
Given,

$\log _2\left(xy\right)=5,\:\log _{\frac{1}{2}}\left(\frac{x}{y}\right)=1$

$\log _2\left(xy\right)=5$

$xy=2^5=32$

$x=\dfrac{32}{y}$

$\log _{\frac{1}{2}}\left(\dfrac{x}{y}\right)=1$

$\log _{\frac{1}{2}}\left(\dfrac{\frac{32}{y}}{y}\right)=1$

$\dfrac{\frac{32}{y}}{y}=\left(\dfrac{1}{2}\right)^1$

$\dfrac{32}{y}=\dfrac{1}{2}y$

$y^2=64$

$\Rightarrow y=\pm 8$

$x=\dfrac{32}{\pm 8}=\pm 4$

$(4,8),(-4,-8)$ Therefore $2$ ordered pairs

If $H.C.F. \left(a,b\right) = 9$ and $a  . b = 100$, then $L.C.M.\left(a,b\right) =$

  1. $200$

  2. $100/3$

  3. $100/9$

    1. $150$

Correct Option: C
Explanation:

$H.C.F.(a,b)=9\ a.b=100\ L.C.M.(a,b)=\frac { a.b }{ H.C.F } \ =\quad \frac { 100 }{ 9 } $

Find multiplicity of the polynomial
$f(x) = (x-1)^2(2x+5)^3(x^2+1)^2(x+\pi^2)^4$

  1. $4$

  2. $2$

  3. $8$

  4. $1$


Correct Option: A
Explanation:

The roots of the given function are $1,-\frac{5}{2} ,-i,i,-\pi^{2}$

The multiplicity of$x=1$ is $2$
The multiplicity of $x=-\frac{5}{2}$ is $3$
The multiplicity of $x=i $ is $2$
The multiplicity of $x=-i$ is $2$
The multiplicity of $x=-\pi^{2}$ is $4$
Therefore the multiplicity of polynomial is $4$
Therefor option $A$ is correct

The multiplicity of the root $x=1$ for the function $f(x) = x^2(x+1)^3(x-2)^2(x-1)$ is

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: A
Explanation:

After factorising $f(x)$, $(x-1)$ is appearing only once 

Multiplicity of the root is the number of times a number is zero of a polynomial.
Here $x=1$ is the zero of $f(x)$ only once as it is appearing one.
So, the multiplicity of the root $x=1$x=1 for the function is one.
Hence, option A is correct.

List the multiplicities of the zeroes of the polynomial $P(x)=x^2-14x+49$

  1. $x=5$ is a zero of multiplicity $3$.

  2. $x=7$ is a zero of multiplicity $2$.

  3. $x=6$ is a zero of multiplicity $1$.

  4. None of these


Correct Option: B
Explanation:

Given, $x^2-14x+49$

$\Rightarrow x^2-7x-7x+49$
$\Rightarrow x(x-7)-7(x-7)$
$\Rightarrow (x-7)^2$
So, $x=7$ is a zero of multiplicity $2$.

Is the following quadratic polynomial reducible or irreducible?
$f(x) = x^2 - \sqrt2$

  1. Reducible with one real root

  2. Reducible with two real roots

  3. Irreducible

  4. None of these


Correct Option: B
Explanation:

Let $\sqrt 2=a^2\Rightarrow a^2=2^{1/2}\Rightarrow a=2^{1/4}$

So $f(x)=x^2-a^2=(x+a)(x-a)=(x+2^{1/4})(x-2^{1/4})$, using $a^2-b^2=(a+b)(a-b)$
So given quadratic is reducible to two real roots