Tag: area of sectors and segments

Questions Related to area of sectors and segments

Find the area of a sector in radians whose central angle is $45^o$ and radius is $2$.

  1. $\dfrac{\pi}{3}$

  2. $\dfrac{\pi}{4}$

  3. $\dfrac{\pi}{2}$

  4. $\dfrac{\pi}{6}$


Correct Option: C
Explanation:

Given: $\theta = 25^o = \dfrac{\pi}{4}$
Sector area $=$ $\dfrac{\theta}{2}r^2$
$=$ $\dfrac{\frac{\pi}{4}}{2}\times 2^2$ $=$ $\dfrac{\pi}{2}$

Find the area of a sector with an arc length of $20 cm$ and a radius of $6 cm$.

  1. $20$ $cm^2$

  2. $40$ $cm^2$

  3. $60$ $cm^2$

  4. $80$ $cm^2$


Correct Option: C
Explanation:

Area of sector $=$ $\dfrac { Arc.length }{ 2\pi r } \times \pi { r }^{ 2 }$


                         $=$ $\dfrac { 20 }{ 2\pi r } \times \pi \times 6\times 6=60{ cm }^{ 2 }$

The area of a sector with a radius of $2 cm$ is $12 $$cm^2$. Calculate the angle of the sector. 

(Assume $\pi = 3$)

  1. $360^o$

  2. $160^o$

  3. $90^o$

  4. $180^o$


Correct Option: A
Explanation:
$r = 2$cm
$A = 12cm^2$
Area of sector $=\dfrac {\theta}{360} \times \pi r^2$

$12 = \dfrac {\theta}{360} \times 3 \times 2^2$

$\theta = \dfrac {12 \times 360}{3 \times 4}$

$\theta = 360^o$

What is the area of a sector with a central angle of $100$ degrees and a radius of $5$? (Use $\pi = 3.14$)

  1. $21.80$

  2. $11.56$

  3. $12.46$

  4. $15.75$


Correct Option: A
Explanation:

Area = $\dfrac{n}{360}\pi r^2$
= $\dfrac{100}{360}\pi 5^2$
= $6.944\pi$
= 21.80

The area of a sector is $120\pi$ and the arc measure is $160^o$. What is the radius of the circle?

  1. $16.43$

  2. $11.43$

  3. $12.23$

  4. $10.43$


Correct Option: A
Explanation:

$A _{sector}= \dfrac{n}{360}\pi r^2$
$120\pi= \dfrac{160}{360}\pi r^2$
$270=r^2$
$r = 16.43$

Points $A$ and $B$ lie on circle $O$ (not shown). $AO=3$ and $\angle AOB ={120}^{o}$. Find the area of minor sector $AOB$.

  1. $\dfrac{\pi}{3}$

  2. $\pi$

  3. $3 \pi$

  4. $9 \pi$


Correct Option: C
Explanation:

Area of a sector is given by $\cfrac{\theta}{360} \times \pi \times r^2$ where $\theta$ is the angle made by the sector, $r$ is the radius of the circle.

Here, $\theta = 120^o$ and $r = 3$
$\therefore$ area of minor sector $= \cfrac{120}{360} \times \pi \times 9 = 3\pi$

The minute hand of a clock is $7\ cm$ long. Find the area traced by it on the clock face between $4{:}15$ p.m. and $4{:}35$ p.m.

  1. $59\ cm^{2}$

  2. $65\ cm^{2}$

  3. $51.3\ cm^{2}$

  4. $45\ cm^{2}$


Correct Option: C
Explanation:

Time $= 20$ min

Angle made by minute hand in 1 minute  $=\dfrac { { 360 }^{ 0 } }{ { 60 }^{ 0 } } ={ 6 }^{ 0 }$

$\therefore $  In $20$ min  $={ 6 }^{ 0 }\times 20={ 120 }^{ 0 }$

$\therefore $  Area swept  $=\dfrac { \theta  }{ { 360 }^{ 0 } } \times \pi { r }^{ 2 }=\dfrac { { 120 }^{ 0 } }{ { 360 }^{ 0 } } \times \dfrac { 22 }{ 7 } \times 7\times 7=\dfrac { 154 }{ 3 } =51.3{ cm }^{ 2 }$

Consider a circle with unit radius. There are seven adjacent sectors, $S _{1}, S _{2}, S _{3} ...S _{7}$, in the circle such that their total area is $\dfrac {1}{8}$ of the area of the circle. Further, the area of the $j^{th}$ sector is twice that of the $(j - i)^{th}$ sector, for $j = 2, .... 7$. Find the area of the sector $S _{1}$

  1. $\dfrac {\pi}{1016}$

  2. $\dfrac {\pi}{986}$

  3. $\dfrac {\pi}{116}$

  4. None


Correct Option: A

Find the area of a sector of a circle of radius $28$cm and central angle $45^0$.

  1. $616 cm^{2}$

  2. $308 cm^{2}$

  3. $508 cm^{2}$

  4. $154 cm^{2}$


Correct Option: B
Explanation:

Radius of sector $=28 cm$

Control angle $=45^{ o }$
Area of sector $=\cfrac { \theta  }{ 360° } \times \pi { r }^{ 2 }$
$=\cfrac { 45° }{ 360° } \times \cfrac { 22 }{ 7 } \times 28\times 28\ =308\quad { cm }^{ 2 }$

If a sector of a circle of diameter 21 cm subtends an angle of $120^{\circ}$ at the centre, then what is its area ? 

  1. $115.5 \ cm^2$.

  2. $84 \ cm^2$.

  3. $85.5 \ cm^2$.

  4. $78 \ cm^2$.


Correct Option: A
Explanation:

Area of sector = $\cfrac{120}{360} \times \pi \times (\cfrac{21}{2})^2$

Thus area = $\cfrac{1}{3} \times \cfrac{22}{7} \times \cfrac{441}{4} = 115.5 cm^2$