Tag: system of simultaneous equations
Questions Related to system of simultaneous equations
If a,b,c$\in $ R. Than the system of the equation is :$\frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } -\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1.\ \ \frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } +\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1.\ \ \frac { { x }^{ 2 } }{ { a }^{ 2 } } -\frac { { y }^{ 2 } }{ { b }^{ 2 } } -\frac { { z }^{ 2 } }{ { c }^{ 2 } } =1\ \ has\quad $.
Which of the given values of $x$ and $y$ make the following pairs of matrices equal?
$\begin{bmatrix}3x + 7 & 5\ y + 1 & 2 - 3x\end{bmatrix}$ and $\begin{bmatrix} 0&y - 2 \ 8 & 4\end{bmatrix}$
Suppose $a _1, :a _2,: ... $ are real numbers, with $a _1\neq 0$. If $a _1, :a _2,:a _3,:...$ are in A.P. Then,
if $x= -5 $ is a root of $\displaystyle \Delta =\begin{vmatrix}
2x+1 & 4 & 8 \
2 & 2x & 2 \
7 & 6 & 2x
\end{vmatrix}=0$ then the other two roots are
Given the system of equations
$(b+c)(y+z)-ax=b-c$
$(c+a)(z+x)-by=c-a$
$(a+b)(x+y)-cz=a-b$
(where $a+b+c\neq 0$); then $x:y:z$ is given by
Use matrix to solve the following system of equations
$x+ y +z = 3$
$2x+3y +4z= 7$
Investigate for what values of $\lambda, \mu$ the simultaneous equation $x+y+z=6; x+2y+3z=10$ & $x+2y+\lambda z=\mu$ have an infinite number of solutions
The equations $x+4y-2z=3$, $3x+y+5z=7$ and $2x+3y+z=5$ have
Let $a,\ b,\ c$ be any real numbers. Suppose that there are real numbers $x, y, z$ not all zero such that $x=cy+bz,\ y=az+cx$ and $z=bx+ay$. Then $a^{2}+b^{2}+c^{2}+2abc$ is equal to
One of the roots of $\begin{vmatrix} x+a & b & c\ a & x+b & c\ a & b & x+c \end{vmatrix}=0$ is :