Tag: vieta’s formula for quadratic equations

Questions Related to vieta’s formula for quadratic equations

If the roots of the equation $2x^2 - 3x + 5 = 0$ are reciprocals of the roots of the equation $ax^2 + bx + 2 = 0$, then

  1. $a = 2, b = 3$

  2. $a = 2, b = -3$

  3. $a = 5, b = -3$

  4. $a = 5, b = 3$


Correct Option: C
Explanation:

Let $\alpha ,\beta $ are roots of $2{ x }^{ 2 }-3x+5=0$ 
Then to get equation whose roots are $\displaystyle \dfrac { 1 }{ \alpha  } ,\dfrac { 1 }{ \beta  } $ 
Replace $\displaystyle x\rightarrow \frac { 1 }{ x } \ $
We get $5{ x }^{ 2 }-3x+2=0$.

If each root of the equation ${x}^{2}+11{x}+13=0$ is diminished by $4$, then the resulting equation is

  1. ${x}^{2}+3{x}-15=0$

  2. ${x}^{2}+3{x}+73=0$

  3. ${x}^{2}+19{x}+73=0$

  4. ${x}^{2}-3{x}-4=0$


Correct Option: C
Explanation:

$ The\quad roots\quad of\quad the\quad equation\quad { x }^{ 2 }+11x+13=0\quad is\quad diminished\quad by\quad 4\quad i.e.\ the\quad variable\quad becomes\quad (x+2).\ \therefore \quad
The\quad new\quad equation\quad is\quad \ (x+4)^{ 2 }+11(x+4)+13=0\ \Rightarrow { x }^{ 2 }+8x+16+11x+44+13=0\ \Rightarrow { x }^{ 2 }+19x+73=0\ Ans-\quad Option\quad C .$

If $\displaystyle \alpha, \beta $ are the roots of $\displaystyle x^{2}+3x+3=0$  then find the quadratic equation whose roots are $\displaystyle (\alpha +\beta )$ and $\displaystyle \alpha \beta $

  1. $\displaystyle x^{2}=1$

  2. $\displaystyle x^{2}=4$

  3. $\displaystyle x^{2}=9$

  4. None of these


Correct Option: C
Explanation:

For the equation, sum of roots $ = \alpha  + \beta = -\dfrac {3}{1} = -3 $
Product of roots $ = \alpha  \times \beta = \dfrac {3}{1} = 3 $

So, the eqn with roots $ = \alpha  + \beta$ and $ \alpha  \times \beta $ is $ (x - (-3))(x-3) = 0 $
$ => x^{2} -9 = 0 $

If $a, b, g$  are the roots of the equation $(x - 2$ ) $\displaystyle \left ( x^{2}+6x-11 \right )=0$ therefore $(a + b + g)$  equals

  1. $-4$

  2. $\dfrac{23}{6}$

  3. $13$

  4. $-8$


Correct Option: A
Explanation:

Given, $(x-2)(x^{2}+6x-11)=0$
$x^{3}+6x^{2}-11x-2x^{2}-12x-22=0$
$x^{3}+4x^{2}-23x-22=0$
Then $a=1  ,b=4  g=-22$
Sum of roots $(a+b+g) =\displaystyle \frac{-b}{a}=\frac{-4}{1}=-4$

The roots of equation $\displaystyle x^{2}+px+q=0$ are $1 $ and $2$ . The roots of the equation $\displaystyle qx^{2}-px+1=0$ must be

  1. $-1,$ $\displaystyle -\frac{1}{2}$

  2. $\displaystyle \frac{1}{2},1$

  3. $\displaystyle -\frac{1}{2},1$

  4. $\displaystyle -1,\frac{1}{2}$


Correct Option: A
Explanation:

The equation can be written as $x^{ 2 }+px+q=0$

The roots are $1$ and $2$
Sum of roots $= 3= -p$
Product of roots $= 2= q$
The second equation is $2x^{ 2 }+3x+1=0$
$2x^{ 2 }+2x+x+1=0$
$ \Longrightarrow 2x(x+1)+1(x+2)=0$
$\Longrightarrow (x+1)(2x+1)=0$
$ \Longrightarrow x=-1 $ or $-1/2$

The equation whose roots are twice the roots of $x^2 -3x +3=0$ is

  1. $x^2-6x+12=0$

  2. $x^2-3x+6=0$

  3. $2x^2-3x+3=0$

  4. $4x^2-6x+3=0$


Correct Option: A
Explanation:

$x^2 -3x = 3 = 0$ ........ (1)
Here, $a +\beta =3$ and $a\beta =3$. Therefore,
$2(a +\beta ) =6$
$2\times 2a\beta = 4a\beta =4 \times 3= 12$
The equation whose roots are double of (1),
$x^2 -$(sum of the roots)x + product of the roots $=0$
will be $x^2 -6x + 12 =0$

The equation whose roots are the squares of the roots of equation $x^2 -x +1= 0$ is

  1. $x^2-x+1=0$

  2. $x^2+x+1=0$

  3. $x^2-x-1=0$

  4. $-x^2-x-1=0$


Correct Option: B
Explanation:

The given equation is $x^2 -x + 1 = 0$ ....... (1)
Here, $a +\beta = 1$ and $a\beta = 1$. Therefore,
$a^2+\beta^2 = (a + \beta)^2 -2a\beta = 1-2= -1$
and $a^2\beta^2 = (a\beta)^2 = 1^2= 0$
Therefore, the equation whose roots are square of 1 is $x^2$ -(sum of the roots)x +product $=0$
or $x^2-(-1)x+ 1 =0$
or $x^2+x+ 1 =0$

If $m$ and $n$ are the roots of the equation $(x + p)(x + q) - k = 0$, then the roots of the equation $(x - m)(x - n) + k = 0$ are-

  1. $p$ and $q$

  2. $1/p$ and $1/q$

  3. $-p$ and $-q$

  4. $p + q$ and $p - q$


Correct Option: C
Explanation:

$(x+p)(x+q)-k=0\ \Longrightarrow { x }^{ 2 }+(p+q)x+pq-k=0$

$m$ and $n$ are the roots of this equation
So, we have
Sum of roots $= -(p+q)=m+n$
Product of the roots $=pq-k= mn$
$\Rightarrow pq=mn+k$
Consider, $(x-m)(x-n)+k=0$ 
$\Rightarrow { x }^{ 2 }-(m+n)x+mn+k=0$
Sum of roots is $ m+n$
But $m+n= (-p)+(-q)$
Product of the roots $=mn+k$
But $mn+k= pq= (-p)(-q)$
Hence, the roots of the new equation are $-p,-q$

If $\alpha$ and $\beta$ are the roots of $x^{2} + p = 0$ where p is a prime, which equation has the roots $\dfrac {1}{\alpha}$ and $\dfrac {1}{\beta}$?

  1. $\dfrac {1}{x^{2}} + \dfrac {1}{p} = 0$

  2. $px^{2} + 1 = 0$

  3. $px^{2} - 1 = 0$

  4. $\dfrac {1}{x^{2}} - \dfrac {1}{p} = 0$


Correct Option: B
Explanation:

${ x }^{ 2 }+p=0$

roots are $\alpha & \beta $
sum = $\alpha +\beta =0$
product=$\alpha \beta =p$
New roots are $\cfrac { 1 }{ \alpha  } & \cfrac { 1 }{ \beta  } $
sum = $\cfrac { 1 }{ \alpha  } +\cfrac { 1 }{ \beta  } =\cfrac { \alpha +\beta  }{ \alpha \beta  } =0\ $
product = $\cfrac { 1 }{ \alpha \beta  } =\cfrac { 1 }{ p } $
equation 
${ x }^{ 2 }$-(sum of roots)x+product of roots = 0
${ x }^{ 2 }-0+\cfrac { 1 }{ p } =0\ { px }^{ 2 }+1=0$

The equation formed by multiplying each root of $ax^2  + bx + c = 0$ by 2 is $ x^2 + 36x + 24 = 0$.Which one of the following is correct ?

  1. $ bc = a^2 $

  2. $ bc = 36 a^2 $

  3. $ bc = 72 a^2 $

  4. $ bc = 108 a^2 $


Correct Option: D
Explanation:

let $p,q$ be roots of equation $ax^2+bx+c=0$


So $p+q=\left(-\dfrac{b}{a}\right)$ and $pq=c/a$


$\Rightarrow b=-a(p+q),c=apq$

New equation is $x^2+36x+24=0$ and roots are $2p,2q$

So $2p+2q=-36$

$\Rightarrow p+q=-18$

$2p\times 2q=24$

$\Rightarrow pq=6$

Then, value of $bc$ is $[-a(p+q)][apq]=-a(-18)a6=108a^2$