Tag: a relation between logarithmic functions
Questions Related to a relation between logarithmic functions
The value of $\log _{ 49 }{ 7 } $ is
$\log 3 {27}$ is equal to___
If $\left( \log _{ 3 }{ x } \right) \left( \log _{ x }{ 2x } \right) \left( \log _{ 2x }{ y } \right) =\log _{ x }{ { x }^{ 2 } } $, then $y$ equals:
If $\log _{2x}$$216= x$, where $x$ is real, then $x$ is:
The value of $\log _{ 3 }{ 9 } +\log _{ 5 }{ 25 } +\log _{ 2 }{ 8 } $ is
Solve the following: $\dfrac{1}{\log _{xy} \, xyz} \, + \, \dfrac{1}{\log _{xz} \, xyz} \, + \, \dfrac{1}{\log _{zx} \, xyz} \, =$
If $(150)^x = 7$, then x is equal to:
Given that $N = 7^{\log _{49} 900} , A = 2^{\log _{2} 4} + 3^{\log _{2} 4} + 4^{\log _{2} 2} - 4^{\log _{2} 3} , D = (\log _5\, 49) (\log _7 \, 125)$
Then answer the following questions : (using the values of $N, A, D$)
If $\log _A \, D = a$, then the value of $\log _6 \, 12$ is (in terms of $a$)
If $A = \log _2 \, \log _2 \, \log _4 \, 256 + 2 \, \log _{\sqrt{2}} \, 2$, then $A$ is equal to
If $3{x^{{{\log } _5}2}} + {2^{{{\log } _5}x}} =64$ then $x$ is equal to