Tag: properties of logarithms
Questions Related to properties of logarithms
$\log _a {bc}= x, \log _b {ac}= y , \log _c {ab}= z$, then $\dfrac{1}{x + 1} + \dfrac{1}{y + 1} + \dfrac{1}{z + 1} = $
The remainder when ${75^{{{75}^{75}}}}$ is divided by $37$.
If $ 3^{\log _{4}{x}}=27$, then $x$ is equal to
The value of $3^{\log _{ 4 }{ 5 }} -5 ^{\log _{ 4 }{ 3 }}$ is
If $\log _{k}x.\log _{5}k=\log _{x}5,k\neq 1,k> 0$, then the value of $x$ is equal to
${ \log } _{ a }{ x }^{ n }=n{ \log } _{ a }x$
If $\displaystyle 5x^{log _23} + 3^{log _2x} = 162$ then logarithm of $x$ to the base 4 has the value equal to :
The value of $ a^{\frac{\log _b (\log _b N)}{\log _b a}}$ is
If ${ log } _{ 4 }5=a\quad and\quad { log } _{ 5 }6=b,\quad then\quad { log } _{ 3 }2$ is equal to
If $4^{\log _{2}\log x}=\log x-\left ( \log x \right )^{2}+1$ (base is e), then find the value of $x$