Tag: proof of irrationality of numbers
Questions Related to proof of irrationality of numbers
If $ x = ( 2 + \sqrt3)^n , n \epsilon N $ and $ f = x - [x],$ then $ \dfrac {f^2}{1-f} $ is :
The product of two irrational numbers is
Which of the following irrational number lies between 20 and 21
State whether the given statement is True or False :
$4-5\sqrt { 2 } $ is an irrational number.
State whether the given statement is True or False :
$5-2\sqrt { 3 } $ is an irrational number.
State whether the given statement is True or False :
$3+\sqrt { 2 } $ is an irrational number.
The equation $\sqrt{x+4}$- $\sqrt{x-3}$+ 1=0 has:
State whether True or False :
All the following numbers are irrationals.
(i) $\dfrac { 2 }{ \sqrt { 7 } } $ (ii) $\dfrac { 3 }{ 2\sqrt { 5 } }$ (iii) $4+\sqrt { 2 } $ (iv) $5\sqrt { 2 } $
(i) $\dfrac { 2 }{ \sqrt { 7 } } $ (ii) $\dfrac { 3 }{ 2\sqrt { 5 } }$ (iii) $4+\sqrt { 2 } $ (iv) $5\sqrt { 2 } $
State whether the given statement is True or False :
$2-3\sqrt { 5 }$ is an irrational number.
State whether the given statement is True or False :
$\sqrt { 3 } +\sqrt { 4 } $ is an irrational number.