Tag: demoivre's theorem
Questions Related to demoivre's theorem
The value of $\displaystyle \left ( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right )^{8}$
If $z=\cos 2\theta +i\sin 2\theta $ then which is correct
Put in the form A +iB
If $z = \left(\displaystyle\frac{\sqrt3}{2}+\displaystyle\frac{i}{2}\right)^5 + \left(\displaystyle\frac{\sqrt3}{2}-\displaystyle\frac{i}{2}\right)^5,$ then
If $z + z^{-1} = 1$, then $z^{100} + z^{-100}$ is equal to
The modulus and amplitude of the complex number $[e^{3-i \tfrac{\pi}{4}}]^3$ are respectively.
If $\displaystyle\alpha =\cos { \left( \frac { 8\pi }{ 11 } \right) } +i\sin { \left( \frac { 8\pi }{ 11 } \right) } ,$ then $Re\left( \alpha +{ \alpha }^{ 2 }+{ \alpha }^{ 3 }+{ \alpha }^{ 4 }+{ \alpha }^{ 5 } \right) $ is equal to
If $x = \cos \theta + i \sin \theta$ the value of $x^n + \dfrac{1}{x^n}$ is
If $\alpha, \beta$ are the roots of the equation $u^2-2u+2=0$ and if $\cot\theta=x+1$, then $[(x+\alpha)^n-(x+\beta)^m]/[\alpha-\beta]$ is equal to
If $z _{1}$ and $\bar {z} _{1}$ represent adjacent of a regular polygon of $n$ sides with centre at the origin & if $\dfrac{Im\ z _{1}}{Re\ z _{1}}=\sqrt{2}-1$ then the value of $n$ is equal to: