Tag: n th root of unity
Questions Related to n th root of unity
lf $a=\displaystyle \cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}, \alpha=a+a^{2}+a^{4}$ and $\beta=a^{3}+a^{5}+a^{6}$, then $\alpha, \beta$ are the roots of the equation
If the expression $z^5 =32$ can be factorised into linear and quadratic factors over real coefficients as $(z^5 - 32)=(z - 2) (z^2-pz+4)(z^2-qz+4)$, where p > q, then the value of $p^2- 2q$
Suppose A is a complex number and $ n \in N, $ such that $A^{n} = (A + 1)^{n} =1, $ then the least value of $n$ is
If $1,$$\alpha _{1},\alpha _{2,} \alpha _{3},\alpha _{4}$ be the roots of $z^{5}-1=0$ and $\omega $ be an imaginary cube root of unity,
then $ \displaystyle \left ( \frac{\omega -\alpha _{1}}{\omega ^{2}-\alpha _{1}} \right )\left ( \frac{\omega -\alpha _{2}}{\omega ^{2}-\alpha _{2}} \right )\left ( \frac{\omega -\alpha _{3}}{\omega ^{2}-\alpha _{3}} \right )\left ( \frac{\omega -\alpha _{4}}{\omega ^{2}-\alpha _{4}} \right )$ is ?