Tag: multiplicative inverse of a matrix
Questions Related to multiplicative inverse of a matrix
$\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$
A= $\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$.
In echelon form, which of the following is incorrect?
The system $\begin{pmatrix} 1 & -1 & 2 \ 3 & 5 & -3 \ 2 & 6 & a \end{pmatrix}\begin{pmatrix} x \ y \ z \end{pmatrix}=\begin{pmatrix} 3 \ b \ 2 \end{pmatrix}$ has no solution, if
Let $A$ be a matrix of order $3\times 3$ such that $\left| \vec { A } \right| =1$. Let $B=2{ A }^{ -1 }$ and $C=\dfrac { adj.A }{ 2 }$. Then the value of $\left| { AB }^{ 2 }{ C }^{ 3 } \right|$, is ( where $\left| A \right|$ represent det. $A$)
$\begin{bmatrix}
\cos\theta & -\sin\theta \[0.3em]
\sin\theta & \cos\theta
\end{bmatrix} = \begin{bmatrix}
1 & -\tan\theta/2 \[0.3em]
\tan\theta/2 & 1
\end{bmatrix} \begin{bmatrix}
1 & \tan\theta/2 \[0.3em]
-\tan\theta/2 & 1
\end{bmatrix}$
If $A = \begin{bmatrix} a & b\ c & d \end{bmatrix} $ satisfies the equation $x^2 - (a+d)x+k=0$ then
The number of $2\times 2$ matrices $A=\left[ \begin{matrix} a & b \ c & d \end{matrix} \right] $ for which ${ \left[ \begin{matrix} a & b \ c & d \end{matrix} \right] }^{ -1 }$ $=\left[ \begin{matrix} \frac { 1 }{ a } & \frac { 1 }{ b } \ \frac { 1 }{ c } & \frac { 1 }{ d } \end{matrix} \right] $, $(a,b,c,d\ \epsilon \ R)$ is
Let A=$\left( {\begin{array}{{20}{c}}{ - 5}&{ - 8}&{ - 7}\3&5&4\2&3&3\end{array}} \right),B = \left( {\begin{array}{{20}{c}}x\y\z\end{array}} \right)$. If AB is scalar $\left( { \ne 0} \right)$ multiple of B, then x+y=
If $A = \left[ {\begin{array}{*{20}{c}}1&2\3&4\end{array}} \right]$, then $8A^{-4}$ is equal to