Tag: multiplicative inverse of a matrix

Questions Related to multiplicative inverse of a matrix

$\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$

The new matrix obtained after  adding $2^{nd} \  row \ to\  3\ times\  3^{rd} \ row $ is

  1. $\begin{bmatrix} 1&2&3\4&5&6\25&29&33\end{bmatrix}$

  2. $\begin{bmatrix} 1&2&3\25&-29&-33\4&5&6\end{bmatrix}$

  3. $\begin{bmatrix} 1&2&3\7&8&9\4&5&6\end{bmatrix}$

  4. $\begin{bmatrix} 1&2&3\-25&-29&-33\4&5&6\end{bmatrix}$


Correct Option: A
Explanation:
$A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
$\Rightarrow { R } _{ 3 }\rightarrow 3{ R } _{ 3 }+{ R } _{ 2 }$ for new matrix
$A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3(7)+4 & 3(8)+5 & 3(9)+6 \end{bmatrix}$
New matrix $=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 25 & 29 & 33 \end{bmatrix}$
Option A is correct

A= $\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$.

B is matrix obtained by subtracting $4\ times 1^{st}\ row from \ 2^{nd} \ row$ of A.
C is matrix obtained by subtracting $7 \ times \ 1^{st}\ row\ from\ 3^{rd} row$, then $C$ is 

  1. $\begin{bmatrix} 1&2&3\0&3&6\0&6&12\end{bmatrix}$

  2. $\begin{bmatrix} 1&2&3\7&0&0\4&5&6\end{bmatrix}$

  3. $\begin{bmatrix} 1&2&3\0&1&2\3&4&5\end{bmatrix}$

  4. $\begin{bmatrix} 1&2&3\0&-3&-6\0&-6&-12\end{bmatrix}$


Correct Option: D
Explanation:
Given $A=\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$
B is obtained by substracting $4{ R } _{ 1 }$ from ${ R } _{ 2 }$
$\Rightarrow { R } _{ 2 }\leftrightarrow { R } _{ 2 }-4{ R } _{ 1 }$$\rightarrow B\sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 9 \end{bmatrix}$
C is obtained by subtracting $7{ R } _{ 1 }$ from ${ R } _{ 3 }$
$\Rightarrow { R } _{ 3 }\leftrightarrow { R } _{ 3 }-7{ R } _{ 1 }$
$C\sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \end{bmatrix}$
$\therefore $option D is correct

In echelon form, which of the following is incorrect?

  1. Every row of $A$ which has all its entries $0$ occurs below every row which has a non-zero entry

  2. The first non-zero entry in each non-zero row is $1$

  3. The number of zeros before the first non-zero element is a row is less than than the number of such zeros in the next row

  4. Two rows can have same number of zeros before the first non-zero entry


Correct Option: D
Explanation:

Echelon form of matrix has the following characteristics:

1. The first non-zero entry of every row is 1.

2.
 The first non-zero entry in every row is one position right to the previous row.

3.
 The row with all zero elements will be below the rows having a non-zero element.

Therefore, according to the question statement in option D is incorrect.

Hence, the answer is option D.

The system $\begin{pmatrix} 1 & -1 & 2 \ 3 & 5 & -3 \ 2 & 6 & a \end{pmatrix}\begin{pmatrix} x \ y \ z \end{pmatrix}=\begin{pmatrix} 3 \ b \ 2 \end{pmatrix}$ has no solution, if

  1. $a=-5,b\ne 5$

  2. $a=-5, b=5$

  3. $a\ne -5, b=5$

  4. $a\ne -5,b\ne 5$


Correct Option: A
Explanation:

Given 
$\begin{pmatrix} 1 & -1 & 2 \ 3 & 5 & -3 \ 2 & 6 & a \end{pmatrix}\begin{pmatrix} x \ y \ z \end{pmatrix}=\begin{pmatrix} 3 \ b \ 2 \end{pmatrix}$
The augment matrix of given system is
$\left[ A|B \right] =\begin{bmatrix} 1 & -1 & 2 & | & 3 \ 3 & 5 & -3 & | & b \ 2 & 6 & a & | & 2 \end{bmatrix}$
${ R } _{ 2 }\rightarrow { R } _{ 2 }-3{ R } _{ 1 }$ gives
$\left[ A|B \right] =\begin{bmatrix} 1 & -1 & 2 & | & 3 \ 0 & 8 & -9 & | & b-9 \ 2 & 6 & a & | & 2 \end{bmatrix}$
${ R } _{ 3 }\rightarrow { R } _{ 3 }-2{ R } _{ 1 }$ gives
$\left[ A|B \right] =\begin{bmatrix} 1 & -1 & 2 & | & 3 \ 0 & 8 & -9 & | & b-9 \ 0 & 8 & a-4 & | & -4 \end{bmatrix}$
${ R } _{ 3 }\rightarrow { R } _{ 3 }-{ R } _{ 2 }$ gives
$\left[ A|B \right] =\begin{bmatrix} 1 & -1 & 2 & | & 3 \ 0 & 8 & -9 & | & b-9 \ 0 & 0 & a+5 & | & 5-b \end{bmatrix}$
We know that
For no solution
Rank A < Rank $\left[ A|B \right] $
$\therefore$ $a+5=0$ and $5-b\ne 0$
$a=-5, b\ne 5$

Let $A$ be a matrix of order $3\times 3$ such that $\left| \vec { A }  \right| =1$. Let $B=2{ A }^{ -1 }$ and $C=\dfrac { adj.A }{ 2 }$. Then the value of  $\left| { AB }^{ 2 }{ C }^{ 3 } \right|$, is ( where $\left| A \right|$ represent det. $A$)

  1. $1$

  2. $\dfrac { 1}{ 2 }$

  3. $8$

  4. $64$


Correct Option: B
Explanation:
$adj(A)=|\vec{A}|^{n-1}$

$n=3,\therefore adj(A)=|\vec{A}|^{3-1}=|\vec{A}|^2$

$|\vec{A}|=1,\therefore adj(A)=1$

$adj(A)=|\vec{A}|^{n-1}$

$n=3,\therefore adj(A)=|\vec{A}|^{3-1}=|\vec{A}|^2$

$|\vec{A}|=1,\therefore adj(A)=1$

$|\vec{A}|=1$

$B=2|\vec{A}|=1\Rightarrow B=2\times 1=2$

$C=\dfrac{adjA}{2}=\dfrac{1}{2}$

$|AB^2C^3|=\left | 1\times 2^2\times \left ( \dfrac{1}{2} \right )^3 \right |$

$=\dfrac{1}{2}$

 $\begin{bmatrix}
              \cos\theta & -\sin\theta \[0.3em]
              \sin\theta & \cos\theta
              \end{bmatrix} = \begin{bmatrix}
              1 & -\tan\theta/2 \[0.3em]
             \tan\theta/2 & 1
              \end{bmatrix} \begin{bmatrix}
              1  & \tan\theta/2 \[0.3em]
              -\tan\theta/2 & 1
              \end{bmatrix}$

  1. True

  2. False


Correct Option: A

If $A = \begin{bmatrix} a & b\ c  & d \end{bmatrix} $ satisfies the equation $x^2 - (a+d)x+k=0$ then

  1. $k = bc$

  2. $ k =ad$

  3. $k = a^2+b^2+c^2+d^2$

  4. $k=ad-bc$


Correct Option: D
Explanation:

$A=\begin{bmatrix}a&b\c&d\end{bmatrix}$


$\implies \begin{vmatrix}\lambda-a&b\c&\lambda-d\end{vmatrix}=0$

$(\lambda-a)(\lambda-d)-bc=0$

$\implies {\lambda}^{2}-(a+d)\lambda+(a{d}-b{c})=0$

Comparing with $x^2 - (a+d)x+k=0$

$\implies k=a{d}-b{c}$

The number of $2\times 2$ matrices $A=\left[ \begin{matrix} a & b \ c & d \end{matrix} \right] $ for which ${ \left[ \begin{matrix} a & b \ c & d \end{matrix} \right]  }^{ -1 }$ $=\left[ \begin{matrix} \frac { 1 }{ a }  & \frac { 1 }{ b }  \ \frac { 1 }{ c }  & \frac { 1 }{ d }  \end{matrix} \right] $, $(a,b,c,d\ \epsilon \ R)$ is

  1. $0$

  2. $1$

  3. $2$

  4. $Infinite$


Correct Option: A
Explanation:

If $A=\begin{bmatrix} a & b \ c & d \end{bmatrix}\quad { \begin{bmatrix} a & b \ c & d \end{bmatrix} }^{ -1 }=\begin{bmatrix} 1/a & 1/b \ 1/c & 1/d \end{bmatrix}$                          Not possible for any values of $a, b, c$

$A=\begin{bmatrix} a & b \ c & d \end{bmatrix}\quad =Adj{ \begin{bmatrix} d & -c \ -b & a \end{bmatrix} }\ \Rightarrow { A }^{ -1 }=\begin{bmatrix} d & -c \ -b & a \end{bmatrix}$

Let A=$\left( {\begin{array}{{20}{c}}{ - 5}&{ - 8}&{ - 7}\3&5&4\2&3&3\end{array}} \right),B = \left( {\begin{array}{{20}{c}}x\y\z\end{array}} \right)$. If AB is scalar $\left( { \ne 0} \right)$ multiple of B, then x+y=

  1. $z$

  2. $-z$

  3. $0$

  4. $2z$


Correct Option: B
Explanation:
$A=\begin{pmatrix} -5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3 \end{pmatrix}\quad B=\begin{pmatrix} x \\ y \\ z \end{pmatrix}$
Given $AB=k\ B$
$AB\Rightarrow \begin{pmatrix} -5 & -8 & -7 \\ 3 & 5 & 4 \\ 2 & 3 & 3 \end{pmatrix}\begin{pmatrix} x \\ y \\ z \end{pmatrix}\quad k=\begin{pmatrix} x \\ y \\ z \end{pmatrix}$
$\Rightarrow \begin{pmatrix} -5x & -8y & -7z \\ 3x & +5y & +4z \\ x2 & +3y & +3z \end{pmatrix}=\quad k\begin{pmatrix} x \\ y \\ z \end{pmatrix}$
On adding all the elements on left and right side 
$\Rightarrow \ (-5x-8y-7z)+(3x+5y+47)+(2x+3y+3z)$
$=k(x+y+z)$
$\Rightarrow \ D=k(x+y+z)$
$k\neq 0$
$\Rightarrow \ x+y+z=0$
$\Rightarrow \ x+y=-z$

If $A = \left[ {\begin{array}{*{20}{c}}1&2\3&4\end{array}} \right]$, then $8A^{-4}$ is equal to

  1. $145A^{-1}+27I$

  2. $145A^{-1}-27I$

  3. $27I - 145A^{-1}$

  4. $29A^{-1} +9I$


Correct Option: C