Tag: properties of matrix multiplication
Questions Related to properties of matrix multiplication
If $A$ is an invertible square matrix then $|A^{-1}| = ?$
If $A = \begin{bmatrix} -2& 3\ 1 & 1\end{bmatrix}$ then $|A^{-1}| = ?$
If matrices $A$ and $B$ anticommute then
Let $A$ and $B$ be two $2 \times 2$ matrices. Consider the statements
$(i)$ $AB =0 \Rightarrow A = 0 :or :B = 0$
$ (ii)$ $AB =I \Rightarrow A =B^{-1}$
$(iii)$ $(A + B)^2 = A^2 + 2AB + B^2$
If $A = \begin{bmatrix} 2& -1\ 1 & 3\end{bmatrix}$, then $A^{-1} = ?$
If $A$ and $B$ are invertible square matrices of the same order then $(AB)^{-1} = ?$
If $A$ and $B$ are two square matrices of the same order and $m$ is a positive integer, then
$(A + B)^m =$ $^mC _0A^m +$ $^mC _1 A^{m -1} B + ^mC _2A^{m-2} B^2 + ... +$ $^mC _{m- 1} AB^{m-1}+$ $^mC _m B^m$ if
Let $A, : B : and : C$ be $2\times 2$ matrices with entries from the set of real numbers. Define $\ast $ as follows: $\displaystyle A\ast B=\frac{1}{2}(AB + BA)$, then
If $A$ and $B$ are square matrices of the same order such that $A^2=A,:B^2=B, :AB = BA = 0$, then
If $A^k=0$ for some value of $k$ and $B=1+A+A^2+...+A^{k-1},$ then $B^{-1}$ equal