Tag: multiplication of matrices
Questions Related to multiplication of matrices
Let $A, : B : and : C$ be $2\times 2$ matrices with entries from the set of real numbers. Define $\ast $ as follows:
$\displaystyle A \ast B=\frac{1}{2}(AB\,'+A'B)$. Which of the given is true?
Say true or false:
If $A$ is a non-singular matrix, then
The inverse of a skew-symmetric matrix of an odd order is
If $AB=A$ and $BA=B$, where $A$ and $B$ are square matrices, then
If $A=\begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$, $B=\begin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$ then ${(A+B)}^{2}$ equals
If $D=diag({d} _{1}, {d} _{2}, {d} _{3}........{d} _{n})$, where ${d} _{1}\ne 0$ for all $i=1, 2,.....n$, then ${D}^{-1}$ is equal to
If for suitable matrices $A, B$; $AB=A$ and $BA=B$; then ${A}^{2}$ equals-
lf $\mathrm{A}$ is $\left{\begin{array}{lll}
8 & -6 & 2\
-6 & 7 & -4\
2 & -4 & \lambda
\end{array}\right}$ is a singular matrix then $\lambda =$