Tag: geometric sequences

Questions Related to geometric sequences

Which of the following is a geometric series? 

  1. $2,4,6,8 , \dots \dots$

  2. $1 / 2,1,2,4 \dots \dots$

  3. $1 / 4,1 / 6,1 / 8,1 / 10 , \dots \ldots$

  4. $3,9,18,36 , \dots$


Correct Option: B
Explanation:

A series is said to be geometric when ratio between one term and its previous term is constant/same throughout the series.


a) $2, 4, 6, 8$


$\Rightarrow$$\dfrac{4}{2} \neq \dfrac{6}{4} $

b) $\dfrac{1}{2} , 1 , 2, 4$

$\Rightarrow$$\dfrac{1}{\dfrac{1}{2}} = \dfrac{2}{1} = \dfrac{4}{2} = 2 $

c) $\dfrac{1}{4} , \dfrac{1}{6} , \dfrac{1}{8}$

$\Rightarrow$$\dfrac{1/6}{1/4} \neq \dfrac{1/8}{1/6}$

d) $3, 9, 18 , 36$

$\Rightarrow$$\dfrac{9}{3} \neq \dfrac{18}{9}$.

Coefficient of $x^r$ in $1+(1+x)+(1+x)^2+......+ (1+x)^n$ is 

  1. $^{n+3}C _r$

  2. $^{n+1}C _{r+1}$

  3. $^nC _r$

  4. $^{(n+2)}C _r$


Correct Option: A
Explanation:

Consider given the series, $1+\left( 1+x \right)+{{\left( 1+x \right)}^{2}}+{{\left( 1+x \right)}^{3}}+...............{{\left( 1+x \right)}^{n}}$

Given series is G.P. which have first term $a=1$,comman ratio $r=1+x$ and number of term $=n$

So sum is,

${{s} _{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}=\dfrac{[{{\left( 1+x \right)}^{n}}-1]}{1+x}={{\left( 1+x \right)}^{n-1}}-{{\left( 1+x \right)}^{-n}}$

Now rth term of ${{\left( 1+x \right)}^{n-1}}-{{\left( 1+x \right)}^{-n}}$ is $={}^{n-1}{{C} _{r}}{{x}^{r}}-{}^{-n}{{C} _{r}}.{{x}^{r}}=\left( {}^{n-1}{{C} _{r}}-{}^{-n}{{C} _{r}} \right){{x}^{r}}$


Hence, coefficient of ${{x}^{r}}=\left( {}^{n-1}{{C} _{r}}-{}^{-n}{{C} _{r}} \right)$


Hence, this is the answer.

The value of $p$ if $3,p,12$ are in GP

  1. $6$

  2. $4$

  3. $9$

  4. None.


Correct Option: A
Explanation:

Given $3,p,12$ are in GP

The condition to be in GP
$b^2=ac\\p^2=3(12)\\p^2=36\\p=6$

The common ratio of GP $4,8,16,32,.....$ is

  1. $2$

  2. $3$

  3. $4$

  4. $0$


Correct Option: A
Explanation:

Given series is $4,8,16,32,....$

Common ratio is given as $\dfrac84=2$

If $\alpha, \beta, \gamma$ are non-constant terms in G.P and equations $\alpha { x }^{ 2 }+2\beta x+\gamma =0\quad $ and ${x}^{2}+x-1=0$ has a common root then $\left( \gamma -\alpha  \right) ,\beta $ is

  1. $\alpha \beta $

  2. $\beta \gamma $

  3. $\gamma \alpha $

  4. $0$


Correct Option: C
Explanation:

Let the common ratio of G.P is $r$ Therefore $\quad \beta =\alpha t,\alpha { t }^{ 2 }$
Equation $\alpha { x }^{ 2 }+2\alpha rx+\alpha { t }=0\quad 
\Rightarrow { x }^{ 2 }+2rx+{ t }^{ 2 }=0....(i)$
Given equation (i) and ${ x }^{ 2 }+x-1=0....(ii)$ has a common root
$(i)-(ii)\Rightarrow (2e-1)x+({ r }^{ 2 }+1)=0\Rightarrow x=\cfrac { -\left( { r }^{ 2 }+1 \right)  }{ 2r-1 } ....(iii)\quad $
Putting (iii) in equation (ii) $\Rightarrow { \left( { r }^{ 2 }+1 \right)  }^{ 2 }-\left( { r }^{ 2 }+1 \right) (2r-1)-{ \left( { 2r }^{ 2 }-1 \right)  }^{ 2 }=0\Rightarrow { r }^{ 4 }-2{ r }^{ 3 }-{ r }^{ 2 }+2r+1=0....(iv)$
dividing equation (iv) by ${r}^{2}$ $\Rightarrow { \left( r-\cfrac { 1 }{ r }  \right)  }^{ 2 }-2{ \left( r-\cfrac { 1 }{ r }  \right)  }+1=0\Rightarrow { \left( r-\cfrac { 1 }{ r } -1 \right)  }^{ 2 }=0\Rightarrow \cfrac { r-1 }{ r } =1....(v)\quad $
$\left( \gamma -\alpha  \right) \beta =\left( \alpha { r }^{ 2 }-\alpha  \right) \times \alpha r={ \alpha  }^{ 2 }\left( { \alpha  }^{ 2 }-1 \right) r={ \alpha  }^{ 2 }(r-1)={ \alpha  }^{ 2 }{ r }^{ 2 }$
(using $(v)=\alpha \times \alpha { t }^{ 2 }\quad $

Write down the first five terms of the geometric progression which has first term 1 and common ratio 4.

  1. 1, 4, 16, 64, 244

  2. 1, 4, 24, 64, 256

  3. 1, 4, 16, 32, 256

  4. 1, 4, 16, 64, 256


Correct Option: D
Explanation:

Let a and d be the first term and common ratio of the GP respectively.
Given a=1 and d=4.
Now, $a _n=ar^{n-1}$
$\therefore a _1=a=1$
$a _2=ar=1\times4=4$
$a _3=ar^2=1\times(4)^2=16$
$a _4=ar^3=1\times(4)^3=64$
$a _5=ar^4=1\times(4)^4=256$





$\displaystyle \frac{1}{c},(\frac{1}{ca})^{\dfrac{1}{2}},\frac{1}{a}$ is in

  1. AP

  2. GP

  3. HP

  4. NONE


Correct Option: B
Explanation:

Given series


$\dfrac{1}{c},\left(\dfrac{1}{ca}\right)^{\dfrac{1}{2}},\dfrac{1}{a}$

Lets consider a G.P of elements $A,B,C$

 $\therefore$ Geo.mean $\Rightarrow B^2=AC$

Comparing it with given series.

$A=\dfrac{1}{c}B=\left(\dfrac{1}{ca}\right)^{\dfrac{1}{2}},C=\dfrac{1}{a}$

$\therefore B^2=\left(\dfrac{1}{ca}\right)^{\dfrac{1}{2}\times 2}$

            $=\dfrac{1}{ca}$........(1)

$AC=\dfrac{1}{c}\times \dfrac{1}{a}=\dfrac{1}{ca}$..............(ii)

$\therefore (i)=(ii)$

$\therefore B^2=AC$ So given series is in G.P 

Determine the relations among x, y and z if $y^{2}=xz$

  1. A.P

  2. G.P

  3. A.G.P

  4. none of these


Correct Option: B
Explanation:

It is fundamental concept that if $y^2 = xz$, then $x,y,z\in$  G.P

Find the sum the infinite G.P.: $\displaystyle {\frac{2}{3}\, -\, \frac{4}{9}\, +\, \frac{8}{27}\, -\, \frac{16}{21}\, +\, ........}$ 

  1. $\displaystyle \frac{2}{5}$

  2. $\displaystyle \frac{3}{5}$

  3. $\displaystyle \frac{19}{27}$

  4. $\displaystyle \frac{8}{5}$


Correct Option: A
Explanation:

We know, $S _{\infty }=\dfrac{a}{1-r}$
From the given series, $a=\dfrac{2}{3} ,r=-\dfrac{2}{3}$
$\therefore S _{\infty }=\dfrac{\frac{2}{3}}{1-\left ( -\frac{2}{3} \right )}$


$\Rightarrow \dfrac{\frac{2}{3}}{1+\frac{2}{3}}$

$\Rightarrow \dfrac{\frac{2}{3}}{\frac{5}{3}}$

$\Rightarrow \dfrac{2}{5}$

Sum the series: $\displaystyle {1\, -\, \frac{1}{3}\, +\, \frac{1}{3^2}\, -\, \frac{1}{3^3}\, +\, \frac{1}{3^4}.......\infty}$

  1. $\displaystyle \frac{3}{4}$

  2. $\displaystyle \frac{4}{3}$

  3. $\displaystyle \frac{2}{3}$

  4. $\displaystyle \frac{1}{3}$


Correct Option: A
Explanation:

We know, $S _{\infty }=\dfrac{a}{1-r}$
From the given series, $a=1 ,r=-\dfrac{1}{3}$
$\therefore S _{\infty }=\dfrac{1}{1-\left ( -\dfrac{1}{3} \right )}$
$= \dfrac{1}{1+\dfrac{1}{3}}$


$ =\dfrac{1}{\dfrac{4}{3}}$

$= \dfrac{3}{4}$