Tag: sum of terms of g.p
Questions Related to sum of terms of g.p
The geometric series $a+ar+ar^{2}+ar^{3}+......\infty$ has sum $7$ and the terms involving odd powders of $r$ has sum $'3'$, then the value of $(a^{2}-r^{2})$ is-
The sum
$1 + \left( {1 + x} \right) + \left( {1 + x + {x^2}} \right) + \left( {1 + x + {x^2} + {x^3}} \right) + \ldots n$ terms equals
$\lim _{ x\leftarrow 1 }{ \cfrac { x+{ x }^{ 2 }+{ x }^{ 3 }+....+{ x }^{ n }-n }{ x-1 } } =$
The sum of first $10$ terms of the series $\sqrt{2}+\sqrt{6}+\sqrt{18}+...$ is
If ${S} _{n}=\sum _{ r=1 }^{ n }{ \cfrac { 1+2+{ 2 }^{ 2 }+..Sum\quad to\quad r\quad terms }{ { 2 }^{ r } } } $, then ${S} _{n}$ is equal to
Find the sum of 8 terms of the G.P: 3+6+12+24.........
If $S _{1}=\left{2\right},\ S _{2}=\left{3,6\right},\ S _{3}=\left{4,8,16\right},\ S _{4}=\left{5,10,20,40\right},...$ then the sum of numbers in the set $S _{15}$ is
If $a _{0},a _{1},a _{3},....$ and $b _{0},b _{1},b _{2},b _{3},...$ are two geometric progressions with $a _{1}=2\surd 3$ and $b _{1}=\dfrac {52}{9}\sqrt {3}$ if $3a _{99}b _{99}=104$ then $\displaystyle \sum^{101} _{i=0}a _{1}b _{1}$ is
$1+3+7+15+31+.....$ to n terms
If $1+a+a^{2}+a^{3}+.........+a^{n}=(1+a)(1+a^2)(1+a^4)$ then $n$ is given by