Tag: distance between two points in space

Questions Related to distance between two points in space

Perimeter of triangle whose vertices are $(0,4,0), (3,4,0)$ and $(0,4,4)$, is

  1. $10$

  2. $12$

  3. $25$

  4. $15$


Correct Option: B
Explanation:

 Vertices of triangle are $(0,4,0),(3,4,0)$ and $(0,4,4)$

then perimeter=?
here AB=$\sqrt{(3-0)^2+(4-4)^2+(0-0)^2}$
$=3$
BC$=\sqrt{(3-0)^2+(4-4)^2+(0-4)^2}$
$=\sqrt{9+16}$
$=5$
CA$=\sqrt{(0-0)^2+(4-4)^2+(0-4)^2}=4$
used distance formula b/w two points
$(x _1,y _1,z _1) and (x _2,y _2,z _2)$
$=\sqrt{(x _2-x _2)^2+(y _2-y _1)^2+(z _2-z _1)^2}$
$ perimeter =ABC+BC+CA$
$=3+5+4$
$=12\ units$

Let the distance between vectors are given as follows :
$(i)4i +3j-6k, -2i+j-k$  be $\displaystyle \sqrt{k}$
$(ii) -2i+3j+5k, 7i-k $  be  $\displaystyle m\sqrt{n}$
Find $k-(m*n)$ ?

  1. 20

  2. 21

  3. 22

  4. 23


Correct Option: D
Explanation:

(i) Distance between $4i + 3j - 6k$ and $-2i + j - k$ is given by $\sqrt{(4 + 2)^2 + (3 - 1)^2 + (-6 + 1)^2} = \sqrt{36 + 4 + 25} = \sqrt{65}$

$\Rightarrow k = 65$

(ii) Distance between $-2i + 3j + 5k$ and $7i - k$ would be $\sqrt{(-2 - 7)^2 + (3)^2 + (5 + 1)^2} = \sqrt{81 + 9 + 36} = \sqrt{126} = 3\sqrt{14}$
$\Rightarrow m = 3, n = 14$

$\therefore k - (m*n) = 65 - (3 \times 14) = 65 - 42 = 23$

Find the distance between the pairs of points whose cartesian coordinates are $(2,3,-1), (2,6,2).$

  1. $\displaystyle 3\sqrt{2}.$

  2. $\displaystyle 2\sqrt{3}.$

  3. $\displaystyle 5\sqrt{2}.$

  4. $\displaystyle 2\sqrt{5}.$


Correct Option: A
Explanation:

Distance Between two points $(a,b,c)$ and $(x,y,z)$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $(2,3,-1)$, $(2,6,2)$
Distance $=\sqrt { \left( 2-2 \right) ^{ 2 }+\left( 3-6 \right) ^{ 2 }+\left( -1-2 \right) ^{ 2 } } $
                $=\sqrt { 18 } $
                $=3\sqrt { 2 }$

Find the distance between the points whose position vectors are given as follows

$(-1,1,3), (0,5,6)$

  1. $\displaystyle \sqrt{118}$

  2. $8$

  3. $\displaystyle \sqrt{26}$

  4. none of these


Correct Option: C
Explanation:

Distance Between two points $(a,b,c)$ and $(x,y,z)$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $(-1,1,3)$, $(0,5,6)$
Distance $=\sqrt { \left( -1-0 \right) ^{ 2 }+\left( 1-6 \right) ^{ 2 }+\left( 3-6 \right) ^{ 2 } } $
                $=\sqrt { 26 } $

Find the distance between the points whose position vectors are given as follows

$-2\hat i+3\hat j+5\hat k, 7\hat i-\hat k$

  1. $\displaystyle 3\sqrt{14}$

  2. $\displaystyle \sqrt{54}$

  3. $\displaystyle 3\sqrt{19}$

  4. $\displaystyle \sqrt{57}$


Correct Option: A
Explanation:

Distance Between two position vectors $a\hat i+b\hat j+c\hat k$ and $x\hat i+y\hat j+z\hat k$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $-2\hat i+3\hat j+5\hat k$, $7\hat i-\hat k$
Distance $=\sqrt { \left( -2-7 \right) ^{ 2 }+\left( 3-0 \right) ^{ 2 }+\left( 5+1 \right) ^{ 2 } } $
                $=\sqrt { 126 } $
                $=3\sqrt { 14 } $

Find the distance between the points whose position vectors are given as follows

$4\hat i+3\hat j-6\hat k, -2\hat i+\hat j-\hat k$

  1. $\displaystyle \sqrt{65}$

  2. $\displaystyle \sqrt{69}$

  3. $13$

  4. none of these


Correct Option: A
Explanation:

Distance Between two position vectors $a\hat i+b\hat j+c\hat k$ and $x\hat i+y\hat j+z\hat k$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $4\hat i+3\hat j-6\hat k$, $-2\hat i+\hat j-\hat k$
Distance $=\sqrt { \left( 4+2 \right) ^{ 2 }+\left( 3-1 \right) ^{ 2 }+\left( -6+1 \right) ^{ 2 } } $
                $=\sqrt { 65 } $

The name of the figure formed by the points $(3, -5, 1), (-1, 0, 8)$ and $(7, -10, -6)$ is

  1. a triangle

  2. a straight line

  3. an isosceles triangle

  4. an equilateral triangle


Correct Option: B
Explanation:

Let $A=(3,-5,1), B = (-1,0,8)$ and $C=(7,-10,-6)$

Now, 
$AB =\sqrt{(3+1)^2+(-5-0)^2+(1-8)^2}=\sqrt {90}=3\sqrt{10}$,
$BC =\sqrt{(-1-7)^2+(0+10)^2+(8+6)^2}=\sqrt{360}=6\sqrt{10}$ 
and $CA =\sqrt{(7-3)^2+(-10+5)^2+(-6-1)^2}=\sqrt{90}=3\sqrt{10}$
Clearly $BC = AB+CA$
$\therefore  $ given points lies on straight line. 

If $(1, 1, a)$ is the centroid of the triangle formed by the points $(1, 2, -3)$ , $(\mathrm{b}, 0, 1)$ and $(-1, 1, -4)$ then $a-b$ $=$

  1. $-5$

  2. $-7$

  3. $5$

  4. $1$


Correct Option: A
Explanation:

The coordinates of the vertices of the triangle are given by $(1,2,-3) , (b,0,1), (-1,1,-4)$

Accordingly the coordinates of the centroid of this triangle will be given by 

($ \dfrac{b}{3}, 1 , -2 $)

Hence, $ \dfrac{b}{3} $ $= 1$ Or, $b= 3$

and $a = -2$

So $a- b = -5$

The circum centre of the triangle formed by the points $(2, 5, 1), (1, 4, -3)$ and $(-2, 7, -3)$ is

  1. $(6,0,1)$

  2. $(0,6,-1)$

  3. $(-1,6,2)$

  4. $(6,1,-2)$


Correct Option: B
Explanation:

Let the points $A(2,5,1) B(1,4,-3)$ and $C(-2,7,-3)$
Now using distance formula in $3D$, we have
$AB {=}$$\sqrt{18}$, $BC {=}$$\sqrt{18}$, and $AC {=}$$\sqrt{36}$
Since, ${AB}^{2}+{BC}^{2}$${=}$${AC}^{2}$
Hence, it is right angle triangle and as we know that the circumcentre of right angled triangle is at the midpoint of hypotenuse i.e $AC$.
Therefore by using section formula (1:1), circumcentre ${=}(0,6,-1)$

Assertion (A): The points $A(2,9,12) ,B(1,8,8) ,C(2,11,8) D(1,12,12)$ are the vertices of a rhombus
Reason (R): $AB = BC = CD = DA$ and $AC = BD$

  1. Both A and R are individually true and R is the correct explanation of A

  2. Both A and R individually true but R is not the correct explanation of A

  3. A is true but R is false

  4. Both A and R false


Correct Option: D
Explanation:
Given: The points $A(2,9,12) ,B(1,8,8) ,C(2,11,8) D(1,12,12)$ are the vertices of a rhombus. 
So using distance formula Reason is not true. 
Thus both A and R false.